These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1672358)

  • 1. Effects of polyamines and thiols on the radiation sensitivity of bacterial transforming DNA.
    Held KD; Awad S
    Int J Radiat Biol; 1991 Mar; 59(3):699-710. PubMed ID: 1672358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA. II. Glutathione, cysteine and cysteamine.
    Held KD; Harrop HA; Michael BD
    Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Jun; 45(6):615-26. PubMed ID: 6429075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protection against radiation-induced degradation of DNA bases by polyamines.
    Douki T; Bretonniere Y; Cadet J
    Radiat Res; 2000 Jan; 153(1):29-35. PubMed ID: 10630975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of polyamine-induced compaction and aggregation of DNA on the formation of radiation-induced strand breaks: quantitative models for cellular radiation damage.
    Newton GL; Aguilera JA; Ward JF; Fahey RC
    Radiat Res; 1997 Sep; 148(3):272-84. PubMed ID: 9291359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radioprotection of DNA by polyamines.
    Spotheim-Maurizot M; Ruiz S; Sabattier R; Charlier M
    Int J Radiat Biol; 1995 Nov; 68(5):571-7. PubMed ID: 7490507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA. III. Reaction rates.
    Held KD; Harrop HA; Michael BD
    Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Jun; 45(6):627-36. PubMed ID: 6429076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic radioprotection of pBR322 by thiols: effect of thiol net charge upon scavenging of hydroxyl radicals and repair of DNA radicals.
    Zheng S; Newton GL; Ward JF; Fahey RC
    Radiat Res; 1992 May; 130(2):183-93. PubMed ID: 1574574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of trypanothione on the biological activity of irradiated transforming DNA.
    Awad S; Henderson GB; Cerami A; Held KD
    Int J Radiat Biol; 1992 Oct; 62(4):401-7. PubMed ID: 1357053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA radiolysis by fast neutrons. II. Oxygen, thiols and ionic strength effects.
    Spotheim-Maurizot M; Franchet J; Sabattier R; Charlier M
    Int J Radiat Biol; 1991 Jun; 59(6):1313-24. PubMed ID: 1677378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of charge in the radioprotection of E. coli by thiols.
    Prise KM; Gillies NE; Whelan A; Newton GL; Fahey RC; Michael BD
    Int J Radiat Biol; 1995 Apr; 67(4):393-401. PubMed ID: 7738402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA. Part I. Actions of dithiothreitol.
    Held KD; Harrop HA; Michael BD
    Int J Radiat Biol Relat Stud Phys Chem Med; 1981 Dec; 40(6):613-22. PubMed ID: 6978298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radioprotection of human cell nuclear DNA by polyamines: radiosensitivity of chromatin is influenced by tightly bound spermine.
    Warters RL; Newton GL; Olive PL; Fahey RC
    Radiat Res; 1999 Mar; 151(3):354-62. PubMed ID: 10073674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of intracellular thiol and polyamine levels on radioprotection by aminothiols.
    Prager A; Terry NH; Murray D
    Int J Radiat Biol; 1993 Jul; 64(1):71-81. PubMed ID: 8102173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radioprotection of cellular chromatin by the polyamines spermine and putrescine: preferential action against formation of DNA-protein crosslinks.
    Chiu S; Oleinick NL
    Radiat Res; 1998 Jun; 149(6):543-9. PubMed ID: 9611092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection or sensitization by thiols or ascorbate in irradiated solutions of DNA or deoxyguanosine.
    Svoboda P; Harms-Ringdahl M
    Radiat Res; 1999 May; 151(5):605-16. PubMed ID: 10319734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radioprotection against the formation of DNA double-strand breaks in cellular DNA but not native cellular chromatin by the polyamine spermine.
    Chiu S; Oleinick NL
    Radiat Res; 1997 Aug; 148(2):188-92. PubMed ID: 9254739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of irradiation conditions on the radiation sensitivity of microorganisms in the presence of OH-radical scavengers.
    Múčka V; Červenák J; Reimitz D; Čuba V; Bláha P; Neužilová B
    Int J Radiat Biol; 2018 Dec; 94(12):1142-1150. PubMed ID: 30451562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation-induced micronucleus formation and DNA damage in human lymphocytes and their prevention by antioxidant thiols.
    Tiwari P; Kumar A; Balakrishnan S; Kushwaha HS; Mishra KP
    Mutat Res; 2009 May; 676(1-2):62-8. PubMed ID: 19486866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of thiols and oxygen on the survival of gamma-irradiated plasmid DNA and cells.
    Schulte-Frohlinde D; Ludwig DC; Rettberg P
    Adv Space Res; 1994 Oct; 14(10):277-84. PubMed ID: 11539962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of varying O2 concentration on the X-ray sensitivity of transforming DNA.
    Held KD; Powers EL
    Int J Radiat Biol Relat Stud Phys Chem Med; 1979 Dec; 36(6):613-9. PubMed ID: 121992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.