BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 16724398)

  • 1. Discovery of small molecule inhibitors of West Nile virus using a high-throughput sub-genomic replicon screen.
    Gu B; Ouzunov S; Wang L; Mason P; Bourne N; Cuconati A; Block TM
    Antiviral Res; 2006 Jun; 70(2):39-50. PubMed ID: 16724398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of West Nile virus replicons to cells in culture and use of replicon-bearing cells to probe antiviral action.
    Rossi SL; Zhao Q; O'Donnell VK; Mason PW
    Virology; 2005 Jan; 331(2):457-70. PubMed ID: 15629788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput assays using a luciferase-expressing replicon, virus-like particles, and full-length virus for West Nile virus drug discovery.
    Puig-Basagoiti F; Deas TS; Ren P; Tilgner M; Ferguson DM; Shi PY
    Antimicrob Agents Chemother; 2005 Dec; 49(12):4980-8. PubMed ID: 16304161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential high-throughput assay for screening inhibitors of West Nile virus replication.
    Lo MK; Tilgner M; Shi PY
    J Virol; 2003 Dec; 77(23):12901-6. PubMed ID: 14610212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sultam thiourea inhibition of West Nile virus.
    Barklis E; Still A; Sabri MI; Hirsch AJ; Nikolich-Zugich J; Brien J; Dhenub TC; Scholz I; Alfadhli A
    Antimicrob Agents Chemother; 2007 Jul; 51(7):2642-5. PubMed ID: 17452483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel small-molecule inhibitors of West Nile virus infection.
    Noueiry AO; Olivo PD; Slomczynska U; Zhou Y; Buscher B; Geiss B; Engle M; Roth RM; Chung KM; Samuel M; Diamond MS
    J Virol; 2007 Nov; 81(21):11992-2004. PubMed ID: 17715228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and characterization of subgenomic replicons of New York strain of West Nile virus.
    Shi PY; Tilgner M; Lo MK
    Virology; 2002 May; 296(2):219-33. PubMed ID: 12069521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. West Nile virus infectious replicon particles generated using a packaging-restricted cell line is a safe reporter system.
    Li W; Ma L; Guo LP; Wang XL; Zhang JW; Bu ZG; Hua RH
    Sci Rep; 2017 Jun; 7(1):3286. PubMed ID: 28607390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and characterization of West Nile virus replicon expressing secreted Gaussia luciferase.
    Shan C; Li X; Deng C; Shang B; Xu L; Ye H; Yuan Z; Zhang B
    Virol Sin; 2013 Jun; 28(3):161-6. PubMed ID: 23709059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of self-replicating subgenomic West Nile virus replicons for screening antiviral compounds.
    Alcaraz-Estrada SL; Reichert ED; Padmanabhan R
    Methods Mol Biol; 2013; 1030():283-99. PubMed ID: 23821276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation and characterization of West Nile pseudo-infectious reporter virus for antiviral screening.
    Zhang HL; Ye HQ; Deng CL; Liu SQ; Shi PY; Qin CF; Yuan ZM; Zhang B
    Antiviral Res; 2017 May; 141():38-47. PubMed ID: 28202375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic systems of West Nile virus and their potential applications.
    Shi PY
    Curr Opin Investig Drugs; 2003 Aug; 4(8):959-65. PubMed ID: 14508880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in West Nile virus nonstructural proteins that facilitate replicon persistence in vitro attenuate virus replication in vitro and in vivo.
    Rossi SL; Fayzulin R; Dewsbury N; Bourne N; Mason PW
    Virology; 2007 Jul; 364(1):184-95. PubMed ID: 17382364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput screening for the identification of small-molecule inhibitors of the flaviviral protease.
    Balasubramanian A; Manzano M; Teramoto T; Pilankatta R; Padmanabhan R
    Antiviral Res; 2016 Oct; 134():6-16. PubMed ID: 27539384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of compounds with anti-West Nile Virus activity.
    Goodell JR; Puig-Basagoiti F; Forshey BM; Shi PY; Ferguson DM
    J Med Chem; 2006 Mar; 49(6):2127-37. PubMed ID: 16539402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. West Nile Virus-Inclusive Single-Cell RNA Sequencing Reveals Heterogeneity in the Type I Interferon Response within Single Cells.
    O'Neal JT; Upadhyay AA; Wolabaugh A; Patel NB; Bosinger SE; Suthar MS
    J Virol; 2019 Mar; 93(6):. PubMed ID: 30626670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of inhibitors of West Nile virus.
    Puig-Basagoiti F; Qing M; Dong H; Zhang B; Zou G; Yuan Z; Shi PY
    Antiviral Res; 2009 Jul; 83(1):71-9. PubMed ID: 19501258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3' untranslated region of West Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication.
    Lo MK; Tilgner M; Bernard KA; Shi PY
    J Virol; 2003 Sep; 77(18):10004-14. PubMed ID: 12941911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chicken 2'-5' oligoadenylate synthetase A inhibits the replication of West Nile virus.
    Tag-El-Din-Hassan HT; Sasaki N; Moritoh K; Torigoe D; Maeda A; Agui T
    Jpn J Vet Res; 2012 Aug; 60(2-3):95-103. PubMed ID: 23094584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 2',5'-oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells.
    Kajaste-Rudnitski A; Mashimo T; Frenkiel MP; Guénet JL; Lucas M; Desprès P
    J Biol Chem; 2006 Feb; 281(8):4624-37. PubMed ID: 16371364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.