BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16724751)

  • 1. [Effects of different concentration copper on pigment content and antioxidase system of Spirodela polyrrhiza and Lemna minor].
    Tu J; Wang X; Liu D; Li Z
    Ying Yong Sheng Tai Xue Bao; 2006 Mar; 17(3):502-6. PubMed ID: 16724751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecophysiological tolerance of duckweeds exposed to copper.
    Kanoun-Boulé M; Vicente JA; Nabais C; Prasad MN; Freitas H
    Aquat Toxicol; 2009 Jan; 91(1):1-9. PubMed ID: 19027182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of graphene oxide on copper stress in Lemna minor L.: evaluating growth, biochemical responses, and nutrient uptake.
    Hu C; Liu L; Li X; Xu Y; Ge Z; Zhao Y
    J Hazard Mater; 2018 Jan; 341():168-176. PubMed ID: 28777962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of antioxidant defences to Zn stress in three duckweed species.
    Uruç Parlak K; Demirezen Yilmaz D
    Ecotoxicol Environ Saf; 2012 Nov; 85():52-8. PubMed ID: 23009815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical responses of two typical duckweeds exposed to dibutyl phthalate.
    Huang Q; Wang Q; Tan W; Song G; Lu G; Li F
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1615-26. PubMed ID: 16835115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of duckweed species diversity on ecophysiological tolerance to copper exposure.
    Zhao Z; Shi H; Duan D; Li H; Lei T; Wang M; Zhao H; Zhao Y
    Aquat Toxicol; 2015 Jul; 164():92-8. PubMed ID: 25938979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of excess iron and copper on physiology of aquatic plant Spirodela polyrrhiza (L.) Schleid.
    Xing W; Huang W; Liu G
    Environ Toxicol; 2010 Apr; 25(2):103-12. PubMed ID: 19260045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological effect of anatase TiO2 nanoparticles on Lemna minor.
    Song G; Gao Y; Wu H; Hou W; Zhang C; Ma H
    Environ Toxicol Chem; 2012 Sep; 31(9):2147-52. PubMed ID: 22760594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of direct blue 129 diazo dye by Spirodela polyrrhiza: An artificial neural networks modeling.
    Movafeghi A; Khataee AR; Moradi Z; Vafaei F
    Int J Phytoremediation; 2016; 18(4):337-47. PubMed ID: 26540563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quizalofop-p-ethyl-induced phytotoxicity and genotoxicity in Lemna minor and Lemna gibba.
    Doganlar ZB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(11):1631-43. PubMed ID: 22702823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidative response of Lemna polyrrhiza L. to cadmium stress.
    John R; Ahmad P; Gadgil K; Sharma S
    J Environ Biol; 2007 Jul; 28(3):583-9. PubMed ID: 18380079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of low temperature on eutrophicated waterbody restoration by Spirodela polyrhiza.
    Song G; Hou W; Wang Q; Wang J; Jin X
    Bioresour Technol; 2006 Oct; 97(15):1865-9. PubMed ID: 16510282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium removal by Lemna minor and Spirodela polyrhiza.
    Chaudhuri D; Majumder A; Misra AK; Bandyopadhyay K
    Int J Phytoremediation; 2014; 16(7-12):1119-32. PubMed ID: 24933906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of Cr(VI) by Spirodela polyrrhiza (L.) Schleiden employing reducing and chelating agents.
    Bala R; Thukral AK
    Int J Phytoremediation; 2011; 13(5):465-91. PubMed ID: 21598777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of silver(I) toxicity on microstructure, biochemical activities, and genic material of Lemna minor L. with special reference to application of bioindicator.
    Li H; Mo F; Li Y; Wang M; Li Z; Hu H; Deng W; Zhang R
    Environ Sci Pollut Res Int; 2020 Jun; 27(18):22735-22748. PubMed ID: 32323236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytotoxic effects of cyanobacteria extract on Lemna minor and Myriophyllum spicatum phyto-tolerance and superoxide dismutase activity.
    Yi D; Yijun Z; Xue B; Zhihui F; Kai C
    Environ Toxicol; 2009 Jun; 24(3):304-8. PubMed ID: 18623078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidative responses of duckweed (Lemna minor L.) to short-term copper exposure.
    Razinger J; Dermastia M; Drinovec L; Drobne D; Zrimec A; Koce JD
    Environ Sci Pollut Res Int; 2007 May; 14(3):194-201. PubMed ID: 17561779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Coercion and damage of Cu pollution on Artemisia lavandulaefolia growth].
    Zhen Q; Yan M; Yang H; Liu D; Wang Y
    Ying Yong Sheng Tai Xue Bao; 2006 Aug; 17(8):1505-10. PubMed ID: 17066712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nickel-induced changes in lipid peroxidation, antioxidative enzymes, and metal accumulation in Lemna gibba.
    Yilmaz DD; Parlak KU
    Int J Phytoremediation; 2011 Sep; 13(8):805-17. PubMed ID: 21972520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Antioxidase activities and photosynthetic pigment contents in Larix principis-rupprechtii leaves along an altitudinal gradient].
    Liang JP; Niu Y; Xie JS; Zhang JD
    Ying Yong Sheng Tai Xue Bao; 2007 Jul; 18(7):1414-9. PubMed ID: 17886628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.