These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1585 related articles for article (PubMed ID: 16725195)
21. Atmospheric plasma treatment of porous polymer constructs for tissue engineering applications. Safinia L; Wilson K; Mantalaris A; Bismarck A Macromol Biosci; 2007 Mar; 7(3):315-27. PubMed ID: 17366509 [TBL] [Abstract][Full Text] [Related]
22. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678 [TBL] [Abstract][Full Text] [Related]
23. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Subramanian A; Krishnan UM; Sethuraman S Biomed Mater; 2011 Apr; 6(2):025004. PubMed ID: 21301055 [TBL] [Abstract][Full Text] [Related]
24. Polyester scaffolds with bimodal pore size distribution for tissue engineering. Sosnowski S; Woźniak P; Lewandowska-Szumieł M Macromol Biosci; 2006 Jun; 6(6):425-34. PubMed ID: 16761274 [TBL] [Abstract][Full Text] [Related]
25. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Telemeco TA; Ayres C; Bowlin GL; Wnek GE; Boland ED; Cohen N; Baumgarten CM; Mathews J; Simpson DG Acta Biomater; 2005 Jul; 1(4):377-85. PubMed ID: 16701819 [TBL] [Abstract][Full Text] [Related]
27. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. Park K; Ju YM; Son JS; Ahn KD; Han DK J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114 [TBL] [Abstract][Full Text] [Related]
28. Characterization of emulsified chitosan-PLGA matrices formed using controlled-rate freezing and lyophilization technique. Moshfeghian A; Tillman J; Madihally SV J Biomed Mater Res A; 2006 Nov; 79(2):418-30. PubMed ID: 16906526 [TBL] [Abstract][Full Text] [Related]
29. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. Li M; Mondrinos MJ; Chen X; Gandhi MR; Ko FK; Lelkes PI J Biomed Mater Res A; 2006 Dec; 79(4):963-73. PubMed ID: 16948146 [TBL] [Abstract][Full Text] [Related]
30. Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Beckstead BL; Pan S; Bhrany AD; Bratt-Leal AM; Ratner BD; Giachelli CM Biomaterials; 2005 Nov; 26(31):6217-28. PubMed ID: 15913763 [TBL] [Abstract][Full Text] [Related]
31. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold. Wu L; Zhang H; Zhang J; Ding J Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446 [TBL] [Abstract][Full Text] [Related]
32. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224 [TBL] [Abstract][Full Text] [Related]
33. Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells. Grenier S; Sandig M; Mequanint K J Biomed Mater Res A; 2007 Sep; 82(4):802-9. PubMed ID: 17326143 [TBL] [Abstract][Full Text] [Related]
34. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Uematsu K; Hattori K; Ishimoto Y; Yamauchi J; Habata T; Takakura Y; Ohgushi H; Fukuchi T; Sato M Biomaterials; 2005 Jul; 26(20):4273-9. PubMed ID: 15683651 [TBL] [Abstract][Full Text] [Related]
35. Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and-elastin-based scaffolds. Buijtenhuijs P; Buttafoco L; Poot AA; Daamen WF; van Kuppevelt TH; Dijkstra PJ; de Vos RA; Sterk LM; Geelkerken BR; Feijen J; Vermes I Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):141-9. PubMed ID: 15032734 [TBL] [Abstract][Full Text] [Related]
36. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954 [TBL] [Abstract][Full Text] [Related]
37. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Cooper JA; Lu HH; Ko FK; Freeman JW; Laurencin CT Biomaterials; 2005 May; 26(13):1523-32. PubMed ID: 15522754 [TBL] [Abstract][Full Text] [Related]
38. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Hwang CM; Khademhosseini A; Park Y; Sun K; Lee SH Langmuir; 2008 Jun; 24(13):6845-51. PubMed ID: 18512874 [TBL] [Abstract][Full Text] [Related]
39. Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds. Wu YC; Shaw SY; Lin HR; Lee TM; Yang CY Biomaterials; 2006 Feb; 27(6):896-904. PubMed ID: 16125224 [TBL] [Abstract][Full Text] [Related]
40. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Liao S; Wang W; Uo M; Ohkawa S; Akasaka T; Tamura K; Cui F; Watari F Biomaterials; 2005 Dec; 26(36):7564-71. PubMed ID: 16005963 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]