BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16725225)

  • 1. Quantification of pore clogging characteristics in potential permeable reactive barrier (PRB) substrates using image analysis.
    Wantanaphong J; Mooney SJ; Bailey EH
    J Contam Hydrol; 2006 Aug; 86(3-4):299-320. PubMed ID: 16725225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbially mediated clinoptilolite regeneration in a multifunctional permeable reactive barrier used to remove ammonium from landfill leachate contamination: laboratory column evaluation.
    Nooten TV; Diels L; Bastiaens L
    Environ Sci Technol; 2010 May; 44(9):3486-92. PubMed ID: 20387879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater.
    Jun D; Yongsheng Z; Weihong Z; Mei H
    J Hazard Mater; 2009 Jan; 161(1):224-30. PubMed ID: 18479811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential flow path development and its influence on long-term PRB performance: column study.
    Kamolpornwijit W; Liang L; West OR; Moline GR; Sullivan AB
    J Contam Hydrol; 2003 Nov; 66(3-4):161-78. PubMed ID: 14568397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of chemical conditioning on the ion exchange capacity and on kinetic of zinc uptake by clinoptilolite.
    Athanasiadis K; Helmreich B
    Water Res; 2005 Apr; 39(8):1527-32. PubMed ID: 15878024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of multi-permeable reactive barriers for long term removal of mixed contaminants.
    Lee JY; Lee KJ; Youm SY; Lee MR; Kamala-Kannan S; Oh BT
    Bull Environ Contam Toxicol; 2010 Feb; 84(2):250-4. PubMed ID: 19949770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage.
    Logan MV; Reardon KF; Figueroa LA; McLain JE; Ahmann DM
    Water Res; 2005 Nov; 39(18):4537-51. PubMed ID: 16213004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater.
    Turner BD; Binning PJ; Sloan SW
    J Contam Hydrol; 2008 Jan; 95(3-4):110-20. PubMed ID: 17913284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies.
    Wilkin RT; Acree SD; Ross RR; Beak DG; Lee TR
    J Contam Hydrol; 2009 Apr; 106(1-2):1-14. PubMed ID: 19167133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB).
    Gibert O; Pomierny S; Rowe I; Kalin RM
    Bioresour Technol; 2008 Nov; 99(16):7587-96. PubMed ID: 18353637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form.
    Doula MK
    Water Res; 2009 Aug; 43(15):3659-72. PubMed ID: 19576609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous structure of natural and modified clinoptilolites.
    Kowalczyk P; Sprynskyy M; Terzyk AP; Lebedynets M; Namieśnik J; Buszewski B
    J Colloid Interface Sci; 2006 May; 297(1):77-85. PubMed ID: 16310211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation.
    Higgins MR; Olson TM
    Environ Sci Technol; 2009 Dec; 43(24):9432-8. PubMed ID: 20000540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance assessment of a zeolite treatment wall for removing Sr-90 from groundwater.
    Rabideau AJ; Van Benschoten J; Patel A; Bandilla K
    J Contam Hydrol; 2005 Sep; 79(1-2):1-24. PubMed ID: 16061306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier.
    Zolla V; Freyria FS; Sethi R; Di Molfetta A
    J Environ Qual; 2009; 38(3):897-908. PubMed ID: 19329678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of aqueous iron(II) and manganese(II) in sub-aqueous active barrier systems containing natural clinoptilolite.
    Jacobs PH; Waite TD
    Chemosphere; 2004 Jan; 54(3):313-24. PubMed ID: 14575744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploration of remediation of acid rock drainage with clinoptilolite as sorbent in a slurry bubble column for both heavy metal capture and regeneration.
    Cui H; Li LY; Grace JR
    Water Res; 2006 Oct; 40(18):3359-66. PubMed ID: 16962631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers.
    Ahmad F; Schnitker SP; Newell CJ
    J Contam Hydrol; 2007 Feb; 90(1-2):1-20. PubMed ID: 17067719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of two low-cost adsorption media for removal of toxic metals from contaminated water.
    Somerville R; Norrström AC
    Water Sci Technol; 2009; 60(4):935-42. PubMed ID: 19700832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of hydrogeochemical processes on zero-valent iron reactive barrier performance: a field investigation.
    Liang L; Moline GR; Kamolpornwijit W; West OR
    J Contam Hydrol; 2005 Nov; 80(1-2):71-91. PubMed ID: 16126304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.