These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 16725314)
1. Discriminant analysis of fecal bacterial species composition for use as a phenotypic microbial source tracking method. Evenson CJ; Strevett KA Res Microbiol; 2006 Jun; 157(5):437-44. PubMed ID: 16725314 [TBL] [Abstract][Full Text] [Related]
2. Phenotypic library-based microbial source tracking methods: efficacy in the California collaborative study. Harwood VJ; Wiggins B; Hagedorn C; Ellender RD; Gooch J; Kern J; Samadpour M; Chapman AC; Robinson BJ; Thompson BC J Water Health; 2003 Dec; 1(4):153-66. PubMed ID: 15382721 [TBL] [Abstract][Full Text] [Related]
3. Choice of indicator organism and library size considerations for phenotypic microbial source tracking by FAME profiling. Duran M; Yurtsever D; Dunaev T Water Sci Technol; 2009; 60(10):2659-68. PubMed ID: 19923772 [TBL] [Abstract][Full Text] [Related]
4. Numbers of fecal streptococci and Escherichia coli in fresh and dry cattle, horse, and sheep manure. Weaver RW; Entry JA; Graves A Can J Microbiol; 2005 Oct; 51(10):847-51. PubMed ID: 16333344 [TBL] [Abstract][Full Text] [Related]
5. Microbial source tracking using host specific FAME profiles of fecal coliforms. Duran M; Haznedaroğlu BZ; Zitomer DH Water Res; 2006 Jan; 40(1):67-74. PubMed ID: 16360192 [TBL] [Abstract][Full Text] [Related]
6. Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria. Jiang SC; Chu W; Olson BH; He JW; Choi S; Zhang J; Le JY; Gedalanga PB Appl Microbiol Biotechnol; 2007 Sep; 76(4):927-34. PubMed ID: 17589839 [TBL] [Abstract][Full Text] [Related]
7. Microbial source tracking in a rural watershed dominated by cattle. Graves AK; Hagedorn C; Brooks A; Hagedorn RL; Martin E Water Res; 2007 Aug; 41(16):3729-39. PubMed ID: 17582454 [TBL] [Abstract][Full Text] [Related]
8. Determining sources of fecal pollution in a rural Virginia watershed with antibiotic resistance patterns in fecal streptococci. Hagedorn C; Robinson SL; Filtz JR; Grubbs SM; Angier TA; Reneau RB Appl Environ Microbiol; 1999 Dec; 65(12):5522-31. PubMed ID: 10584013 [TBL] [Abstract][Full Text] [Related]
9. Identifying fecal sources in a selected catchment reach using multiple source-tracking tools. Vogel JR; Stoeckel DM; Lamendella R; Zelt RB; Santo Domingo JW; Walker SR; Oerther DB J Environ Qual; 2007; 36(3):718-29. PubMed ID: 17412907 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test samples. Griffith JF; Weisberg SB; McGee CD J Water Health; 2003 Dec; 1(4):141-51. PubMed ID: 15382720 [TBL] [Abstract][Full Text] [Related]
11. Classification of antibiotic resistance patterns of indicator bacteria by discriminant analysis: use in predicting the source of fecal contamination in subtropical waters. Harwood VJ; Whitlock J; Withington V Appl Environ Microbiol; 2000 Sep; 66(9):3698-704. PubMed ID: 10966379 [TBL] [Abstract][Full Text] [Related]
12. 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach. Kildare BJ; Leutenegger CM; McSwain BS; Bambic DG; Rajal VB; Wuertz S Water Res; 2007 Aug; 41(16):3701-15. PubMed ID: 17644149 [TBL] [Abstract][Full Text] [Related]
13. Assessment of statistical methods used in library-based approaches to microbial source tracking. Ritter KJ; Carruthers E; Carson CA; Ellender RD; Harwood VJ; Kingsley K; Nakatsu C; Sadowsky M; Shear B; West B; Whitlock JE; Wiggins BA; Wilbur JD J Water Health; 2003 Dec; 1(4):209-23. PubMed ID: 15382725 [TBL] [Abstract][Full Text] [Related]
14. Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. Unno T; Jang J; Han D; Kim JH; Sadowsky MJ; Kim OS; Chun J; Hur HG Environ Sci Technol; 2010 Oct; 44(20):7777-82. PubMed ID: 20853824 [TBL] [Abstract][Full Text] [Related]
15. Discriminant analysis of antibiotic resistance patterns in fecal streptococci, a method to differentiate human and animal sources of fecal pollution in natural waters. Wiggins BA Appl Environ Microbiol; 1996 Nov; 62(11):3997-4002. PubMed ID: 8899986 [TBL] [Abstract][Full Text] [Related]
16. Assessment of equine fecal contamination: the search for alternative bacterial source-tracking targets. Simpson JM; Santo Domingo JW; Reasoner DJ FEMS Microbiol Ecol; 2004 Jan; 47(1):65-75. PubMed ID: 19712347 [TBL] [Abstract][Full Text] [Related]
17. Considerations when using discriminant function analysis of antimicrobial resistance profiles to identify sources of fecal contamination of surface water in Michigan. Kaneene JB; Miller R; Sayah R; Johnson YJ; Gilliland D; Gardiner JC Appl Environ Microbiol; 2007 May; 73(9):2878-90. PubMed ID: 17337537 [TBL] [Abstract][Full Text] [Related]
18. A comparison of ARA and DNA data for microbial source tracking based on source-classification models developed using classification trees. Price B; Venso E; Frana M; Greenberg J; Ware A Water Res; 2007 Aug; 41(16):3575-84. PubMed ID: 17599384 [TBL] [Abstract][Full Text] [Related]
19. Bacterial source tracking and shellfish contamination in a coastal catchment. Geary PM; Davies CM Water Sci Technol; 2003; 47(7-8):95-100. PubMed ID: 12793667 [TBL] [Abstract][Full Text] [Related]
20. Identifying human and livestock sources of fecal contamination in Kenya with host-specific Bacteroidales assays. Jenkins MW; Tiwari S; Lorente M; Gichaba CM; Wuertz S Water Res; 2009 Nov; 43(19):4956-66. PubMed ID: 19692107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]