BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 16725349)

  • 1. Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat.
    Martin C; Martindale J; Berwick J; Mayhew J
    Neuroimage; 2006 Aug; 32(1):33-48. PubMed ID: 16725349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamic changes during somatosensory stimulation in awake and isoflurane-anesthetized mice measured by laser-Doppler flowmetry.
    Takuwa H; Matsuura T; Obata T; Kawaguchi H; Kanno I; Ito H
    Brain Res; 2012 Sep; 1472():107-12. PubMed ID: 22789908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of stimulus-evoked cerebral hemodynamics in the awake mouse and under a novel anesthetic regime.
    Sharp PS; Shaw K; Boorman L; Harris S; Kennerley AJ; Azzouz M; Berwick J
    Sci Rep; 2015 Jul; 5():12621. PubMed ID: 26218081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynamic causal model of the coupling between pulse stimulation and neural activity.
    Lefebvre V; Zheng Y; Martin C; Devonshire IM; Harris S; Mayhew JE
    Neural Comput; 2009 Oct; 21(10):2846-68. PubMed ID: 19635016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation.
    Jones M; Berwick J; Hewson-Stoate N; Gias C; Mayhew J
    Neuroimage; 2005 Sep; 27(3):609-23. PubMed ID: 15978844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemodynamic and neuronal responses to cocaine differ in awake versus anesthetized animals: Optical brain imaging study.
    Park K; Chen W; Volkow ND; Allen CP; Pan Y; Du C
    Neuroimage; 2019 Mar; 188():188-197. PubMed ID: 30513396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral blood flow and BOLD fMRI responses to hypoxia in awake and anesthetized rats.
    Duong TQ
    Brain Res; 2007 Mar; 1135(1):186-94. PubMed ID: 17198686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hemodynamic impulse response to a single neural event.
    Martindale J; Mayhew J; Berwick J; Jones M; Martin C; Johnston D; Redgrave P; Zheng Y
    J Cereb Blood Flow Metab; 2003 May; 23(5):546-55. PubMed ID: 12771569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling between simultaneously recorded BOLD response and neuronal activity in the rat somatosensory cortex.
    Huttunen JK; Gröhn O; Penttonen M
    Neuroimage; 2008 Jan; 39(2):775-85. PubMed ID: 17964186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproducibility and variance of a stimulation-induced hemodynamic response in barrel cortex of awake behaving mice.
    Takuwa H; Autio J; Nakayama H; Matsuura T; Obata T; Okada E; Masamoto K; Kanno I
    Brain Res; 2011 Jan; 1369():103-11. PubMed ID: 21070750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-latency reductions in gamma power predict hemodynamic changes that underlie the negative BOLD signal.
    Boorman L; Harris S; Bruyns-Haylett M; Kennerley A; Zheng Y; Martin C; Jones M; Redgrave P; Berwick J
    J Neurosci; 2015 Mar; 35(11):4641-56. PubMed ID: 25788681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition.
    Liu X; Zhu XH; Zhang Y; Chen W
    Cereb Cortex; 2011 Feb; 21(2):374-84. PubMed ID: 20530220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further nonlinearities in neurovascular coupling in rodent barrel cortex.
    Hewson-Stoate N; Jones M; Martindale J; Berwick J; Mayhew J
    Neuroimage; 2005 Jan; 24(2):565-74. PubMed ID: 15627599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative blood oxygen level dependence in the rat: a model for investigating the role of suppression in neurovascular coupling.
    Boorman L; Kennerley AJ; Johnston D; Jones M; Zheng Y; Redgrave P; Berwick J
    J Neurosci; 2010 Mar; 30(12):4285-94. PubMed ID: 20335464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural and hemodynamic responses elicited by forelimb- and photo-stimulation in channelrhodopsin-2 mice: insights into the hemodynamic point spread function.
    Vazquez AL; Fukuda M; Crowley JC; Kim SG
    Cereb Cortex; 2014 Nov; 24(11):2908-19. PubMed ID: 23761666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex spatiotemporal haemodynamic response following sensory stimulation in the awake rat.
    Martin C; Zheng Y; Sibson NR; Mayhew JE; Berwick J
    Neuroimage; 2013 Feb; 66():1-8. PubMed ID: 23063446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets.
    Santisakultarm TP; Kersbergen CJ; Bandy DK; Ide DC; Choi SH; Silva AC
    J Neurosci Methods; 2016 Sep; 271():55-64. PubMed ID: 27393311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the BOLD and CBV fMRI responses to somatosensory stimulation in awake marmosets (Callithrix jacchus).
    Hirano Y; Yen CC; Liu JV; Mackel JB; Merkle H; Nascimento GC; Stefanovic B; Silva AC
    NMR Biomed; 2018 Mar; 31(3):. PubMed ID: 29285809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural and hemodynamic responses to optogenetic and sensory stimulation in the rat somatosensory cortex.
    Iordanova B; Vazquez AL; Poplawsky AJ; Fukuda M; Kim SG
    J Cereb Blood Flow Metab; 2015 Jun; 35(6):922-32. PubMed ID: 25669905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive correlation between neuronal activity and spin-echo blood oxygenation level-dependent signals in the rat somatosensory cortex evoked by short electrical stimulations at various frequencies and currents.
    Kida I; Yamamoto T
    Brain Res; 2010 Mar; 1317():116-23. PubMed ID: 20059991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.