BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 1672611)

  • 41. Anti-AMP antibody precipitation of multiply adenylylated forms of glutamine synthetase from Escherichia coli: a model relating both concentration and density of antigenic sites with the antibody-antigen interaction.
    Hohman RJ; Rhee SG; Stadtman ER
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7410-4. PubMed ID: 6164060
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis.
    Hauf K; Kayumov A; Gloge F; Forchhammer K
    J Biol Chem; 2016 Feb; 291(7):3483-95. PubMed ID: 26635369
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanistic studies of glutamine synthetase from Escherichia coli: kinetics of ADP and orthophosphate binding to the unadenylylated enzyme.
    Rhee SG; Chock PB
    Biochemistry; 1976 Apr; 15(8):1755-60. PubMed ID: 5113
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxidative modification of Escherichia coli glutamine synthetase. Decreases in the thermodynamic stability of protein structure and specific changes in the active site conformation.
    Fisher MT; Stadtman ER
    J Biol Chem; 1992 Jan; 267(3):1872-80. PubMed ID: 1346137
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reactivation of glutamine synthetase from Escherichia coli after auto-inactivation with L-methionine-S-sulfoximine, ATP, and Mn2+.
    Maurizi MR; Ginsburg A
    J Biol Chem; 1982 Apr; 257(8):4271-8. PubMed ID: 6121801
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interaction of substrates with glutamine synthetase after limited proteolysis.
    Monroe DM; Noyes CM; Lundblad RL; Kingdon HS; Griffith MJ
    Biochemistry; 1984 Sep; 23(20):4565-72. PubMed ID: 6149764
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spin-labeled nucleotide substrates for DNA-dependent RNA polymerase from Escherichia coli.
    Tyagi SC
    J Biol Chem; 1991 Sep; 266(27):17936-40. PubMed ID: 1655731
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mn2+ and substrate interactions with glutamine synthetase from Escherichia coli.
    Hunt JB; Ginsburg A
    J Biol Chem; 1980 Jan; 255(2):590-4. PubMed ID: 6101329
    [No Abstract]   [Full Text] [Related]  

  • 49. Site-directed mutagenesis of Glu-297 from the alpha-polypeptide of Phaseolus vulgaris glutamine synthetase alters kinetic and structural properties and confers resistance to L-methionine sulfoximine.
    Clemente MT; Márquez AJ
    Plant Mol Biol; 1999 Jul; 40(5):835-45. PubMed ID: 10487218
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional arginyl residues as ATP binding sites of glutamine synthetase and carbamyl phosphate synthetase.
    Powers SG; Riordan JF
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2616-20. PubMed ID: 241076
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiple forms of glutamine synthetase. Hybrid formation by association of adenylylated and unadenylylated subunits.
    Ciardi JE; Cimino F; Stadtman ER
    Biochemistry; 1973 Oct; 12(22):4321-30. PubMed ID: 4147976
    [No Abstract]   [Full Text] [Related]  

  • 52. Labeling of specific lysine residues at the active site of glutamine synthetase.
    Colanduoni J; Villafranca JJ
    J Biol Chem; 1985 Dec; 260(28):15042-50. PubMed ID: 2415512
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The central loop of Escherichia coli glutamine synthetase is flexible and functionally passive.
    Pearson JT; Dabrowski MJ; Kung I; Atkins WM
    Arch Biochem Biophys; 2005 Apr; 436(2):397-405. PubMed ID: 15797252
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spin labeling of the Escherichia coli NADH ubiquinone oxidoreductase (complex I).
    Pohl T; Spatzal T; Aksoyoglu M; Schleicher E; Rostas AM; Lay H; Glessner U; Boudon C; Hellwig P; Weber S; Friedrich T
    Biochim Biophys Acta; 2010 Dec; 1797(12):1894-900. PubMed ID: 20959113
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Catalytic cooperativity and subunit interactions in Escherichia coli glutamine synthetase: binding and kinetics with methionine sulfoximine and related inhibitors.
    Wedler FC; Sugiyama Y; Fisher KE
    Biochemistry; 1982 Apr; 21(9):2168-77. PubMed ID: 6124276
    [No Abstract]   [Full Text] [Related]  

  • 56. Localization of the site of adenylylation of glutamine synthetase by electron microscopy of an enzyme-antibody complex.
    Frink RJ; Eisenberg D; Glitz DG
    Proc Natl Acad Sci U S A; 1978 Dec; 75(12):5778-82. PubMed ID: 32536
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adenine nucleotides as allosteric effectors of pea seed glutamine synthetase.
    Knight TJ; Langston-Unkefer PJ
    J Biol Chem; 1988 Aug; 263(23):11084-9. PubMed ID: 2900240
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.
    Krajewski WW; Collins R; Holmberg-Schiavone L; Jones TA; Karlberg T; Mowbray SL
    J Mol Biol; 2008 Jan; 375(1):217-28. PubMed ID: 18005987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Terbium(III) luminescence study of the spatial relationship of tryptophan residues to the two metal ion binding sites of Escherichia coli glutamine synthetase.
    McNemar LS; Lin WY; Eads CD; Atkins WM; Dombrosky P; Villafranca JJ
    Biochemistry; 1991 Apr; 30(14):3417-21. PubMed ID: 1672821
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of metal ions and adenylylation state on the internal thermodynamics of phosphoryl transfer in the Escherichia coli glutamine synthetase reaction.
    Abell LM; Villafranca JJ
    Biochemistry; 1991 Feb; 30(5):1413-8. PubMed ID: 1671336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.