These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 16728394)
1. Epac1 and cAMP-dependent protein kinase holoenzyme have similar cAMP affinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition. Dao KK; Teigen K; Kopperud R; Hodneland E; Schwede F; Christensen AE; Martinez A; Døskeland SO J Biol Chem; 2006 Jul; 281(30):21500-21511. PubMed ID: 16728394 [TBL] [Abstract][Full Text] [Related]
2. Contribution of the carboxyl-terminal regional of the cAMP-dependent protein kinase type I alpha regulatory subunit to cyclic nucleotide interactions. Kapphahn MA; Shabb JB Arch Biochem Biophys; 1997 Dec; 348(2):347-56. PubMed ID: 9434747 [TBL] [Abstract][Full Text] [Related]
3. Probing cAMP-dependent protein kinase holoenzyme complexes I alpha and II beta by FT-IR and chemical protein footprinting. Yu S; Mei FC; Lee JC; Cheng X Biochemistry; 2004 Feb; 43(7):1908-20. PubMed ID: 14967031 [TBL] [Abstract][Full Text] [Related]
4. Origin and Isoform Specific Functions of Exchange Proteins Directly Activated by cAMP: A Phylogenetic Analysis. Ni Z; Cheng X Cells; 2021 Oct; 10(10):. PubMed ID: 34685730 [TBL] [Abstract][Full Text] [Related]
5. cAMP analog mapping of Epac1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. Christensen AE; Selheim F; de Rooij J; Dremier S; Schwede F; Dao KK; Martinez A; Maenhaut C; Bos JL; Genieser HG; Døskeland SO J Biol Chem; 2003 Sep; 278(37):35394-402. PubMed ID: 12819211 [TBL] [Abstract][Full Text] [Related]
6. Mapping intersubunit interactions of the regulatory subunit (RIalpha) in the type I holoenzyme of protein kinase A by amide hydrogen/deuterium exchange mass spectrometry (DXMS). Hamuro Y; Anand GS; Kim JS; Juliano C; Stranz DD; Taylor SS; Woods VL J Mol Biol; 2004 Jul; 340(5):1185-96. PubMed ID: 15236976 [TBL] [Abstract][Full Text] [Related]
7. PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Kim C; Cheng CY; Saldanha SA; Taylor SS Cell; 2007 Sep; 130(6):1032-43. PubMed ID: 17889648 [TBL] [Abstract][Full Text] [Related]
8. Isoform specific differences in binding of a dual-specificity A-kinase anchoring protein to type I and type II regulatory subunits of PKA. Burns LL; Canaves JM; Pennypacker JK; Blumenthal DK; Taylor SS Biochemistry; 2003 May; 42(19):5754-63. PubMed ID: 12741833 [TBL] [Abstract][Full Text] [Related]
9. Conformational analysis of Epac activation using amide hydrogen/deuterium exchange mass spectrometry. Brock M; Fan F; Mei FC; Li S; Gessner C; Woods VL; Cheng X J Biol Chem; 2007 Nov; 282(44):32256-63. PubMed ID: 17785454 [TBL] [Abstract][Full Text] [Related]
10. Cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinases, but not exchange proteins directly activated by cAMP (Epac), mediate thyrotropin/cAMP-dependent regulation of thyroid cells. Dremier S; Milenkovic M; Blancquaert S; Dumont JE; Døskeland SO; Maenhaut C; Roger PP Endocrinology; 2007 Oct; 148(10):4612-22. PubMed ID: 17584967 [TBL] [Abstract][Full Text] [Related]
11. Understanding cAMP-dependent allostery by NMR spectroscopy: comparative analysis of the EPAC1 cAMP-binding domain in its apo and cAMP-bound states. Mazhab-Jafari MT; Das R; Fotheringham SA; SilDas S; Chowdhury S; Melacini G J Am Chem Soc; 2007 Nov; 129(46):14482-92. PubMed ID: 17973384 [TBL] [Abstract][Full Text] [Related]
12. EPAC activation inhibits acetaldehyde-induced activation and proliferation of hepatic stellate cell via Rap1. Yang Y; Yang F; Wu X; Lv X; Li J Can J Physiol Pharmacol; 2016 May; 94(5):498-507. PubMed ID: 26854595 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. de Rooij J; Rehmann H; van Triest M; Cool RH; Wittinghofer A; Bos JL J Biol Chem; 2000 Jul; 275(27):20829-36. PubMed ID: 10777494 [TBL] [Abstract][Full Text] [Related]
14. Novel Epac fluorescent ligand reveals distinct Epac1 vs. Epac2 distribution and function in cardiomyocytes. Pereira L; Rehmann H; Lao DH; Erickson JR; Bossuyt J; Chen J; Bers DM Proc Natl Acad Sci U S A; 2015 Mar; 112(13):3991-6. PubMed ID: 25829540 [TBL] [Abstract][Full Text] [Related]
16. Structure and regulation of the cAMP-binding domains of Epac2. Rehmann H; Prakash B; Wolf E; Rueppel A; de Rooij J; Bos JL; Wittinghofer A Nat Struct Biol; 2003 Jan; 10(1):26-32. PubMed ID: 12469113 [TBL] [Abstract][Full Text] [Related]
17. Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase. Herberg FW; Taylor SS; Dostmann WR Biochemistry; 1996 Mar; 35(9):2934-42. PubMed ID: 8608131 [TBL] [Abstract][Full Text] [Related]
18. The (R)-enantiomer of CE3F4 is a preferential inhibitor of human exchange protein directly activated by cyclic AMP isoform 1 (Epac1). Courilleau D; Bouyssou P; Fischmeister R; Lezoualc'h F; Blondeau JP Biochem Biophys Res Commun; 2013 Oct; 440(3):443-8. PubMed ID: 24099776 [TBL] [Abstract][Full Text] [Related]
19. cAMP-dependent protein kinase regulatory subunit type IIbeta: active site mutations define an isoform-specific network for allosteric signaling by cAMP. Zawadzki KM; Taylor SS J Biol Chem; 2004 Feb; 279(8):7029-36. PubMed ID: 14625280 [TBL] [Abstract][Full Text] [Related]
20. Differential Pharmacophore Definition of the cAMP Binding Sites of Neuritogenic cAMP Sensor-Rapgef2, Protein Kinase A, and Exchange Protein Activated by cAMP in Neuroendocrine Cells Using an Adenine-Based Scaffold. Emery AC; Alvarez RA; Eiden MV; Xu W; Siméon FG; Eiden LE ACS Chem Neurosci; 2017 Jul; 8(7):1500-1509. PubMed ID: 28290664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]