BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 16728453)

  • 41. A riluzole- and valproate-sensitive persistent sodium current contributes to the resting membrane potential and increases the excitability of sympathetic neurones.
    Lamas JA; Romero M; Reboreda A; Sánchez E; Ribeiro SJ
    Pflugers Arch; 2009 Jul; 458(3):589-99. PubMed ID: 19234716
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Persistent Sodium Current Drives Excitability of Immature Renshaw Cells in Early Embryonic Spinal Networks.
    Boeri J; Le Corronc H; Lejeune FX; Le Bras B; Mouffle C; Angelim MKSC; Mangin JM; Branchereau P; Legendre P; Czarnecki A
    J Neurosci; 2018 Aug; 38(35):7667-7682. PubMed ID: 30012693
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Essential role of a fast persistent inward current in action potential initiation and control of rhythmic firing.
    Lee RH; Heckman CJ
    J Neurophysiol; 2001 Jan; 85(1):472-5. PubMed ID: 11152749
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The leaner P/Q-type calcium channel mutation renders cerebellar Purkinje neurons hyper-excitable and eliminates Ca2+-Na+ spike bursts.
    Ovsepian SV; Friel DD
    Eur J Neurosci; 2008 Jan; 27(1):93-103. PubMed ID: 18093175
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Riluzole-sensitive slowly inactivating sodium current in rat suprachiasmatic nucleus neurons.
    Kononenko NI; Shao LR; Dudek FE
    J Neurophysiol; 2004 Feb; 91(2):710-8. PubMed ID: 14573554
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The modulation of two motor behaviors by persistent sodium currents in
    Svensson E; Jeffreys H; Li WC
    J Neurophysiol; 2017 Jul; 118(1):121-130. PubMed ID: 28331009
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrical properties of interneurons found within the trigeminal motor nucleus.
    McDavid S; Verdier D; Lund JP; Kolta A
    Eur J Neurosci; 2008 Sep; 28(6):1136-45. PubMed ID: 18783374
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Motoneuron model of self-sustained firing after spinal cord injury.
    Kurian M; Crook SM; Jung R
    J Comput Neurosci; 2011 Nov; 31(3):625-45. PubMed ID: 21526348
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biophysical mechanism of spike threshold dependence on the rate of rise of the membrane potential by sodium channel inactivation or subthreshold axonal potassium current.
    Wester JC; Contreras D
    J Comput Neurosci; 2013 Aug; 35(1):1-17. PubMed ID: 23344915
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gain of spinal motoneurons measured from square and ramp current pulses.
    Buisas R; Guzulaitis R; Ruksenas O; Alaburda A
    Brain Res; 2012 Apr; 1450():33-9. PubMed ID: 22424791
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabotropic glutamate receptor subtype 1 regulates sodium currents in rat neocortical pyramidal neurons.
    Carlier E; Sourdet V; Boudkkazi S; Déglise P; Ankri N; Fronzaroli-Molinieres L; Debanne D
    J Physiol; 2006 Nov; 577(Pt 1):141-54. PubMed ID: 16931548
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A prolongation of the postspike afterhyperpolarization following spike trains can partly explain the lower firing rates at derecruitment than those at recruitment.
    Wienecke J; Zhang M; Hultborn H
    J Neurophysiol; 2009 Dec; 102(6):3698-710. PubMed ID: 19846616
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the persistent sodium current in squid giant axons.
    Clay JR
    J Neurophysiol; 2003 Jan; 89(1):640-4. PubMed ID: 12522209
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A re-examination of the possibility of controlling the firing rate gain of neurons by balancing excitatory and inhibitory conductances.
    Capaday C
    Exp Brain Res; 2002 Mar; 143(1):67-77. PubMed ID: 11907692
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Loss of β1 accessory Na+ channel subunits causes failure of carbamazepine, but not of lacosamide, in blocking high-frequency firing via differential effects on persistent Na+ currents.
    Uebachs M; Albus C; Opitz T; Isom L; Niespodziany I; Wolff C; Beck H
    Epilepsia; 2012 Nov; 53(11):1959-67. PubMed ID: 23016711
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A comparative analysis of models of Na+ channel gating for mammalian and invertebrate nonmyelinated axons: relationship to energy efficient action potentials.
    Clay JR
    Prog Biophys Mol Biol; 2013 Jan; 111(1):1-7. PubMed ID: 22922062
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of a high-voltage-activated IA current with a role in spike timing and locomotor pattern generation.
    Hess D; El Manira A
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5276-81. PubMed ID: 11309504
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sodium-mediated plateau potentials in lumbar motoneurons of neonatal rats.
    Bouhadfane M; Tazerart S; Moqrich A; Vinay L; Brocard F
    J Neurosci; 2013 Sep; 33(39):15626-41. PubMed ID: 24068829
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of persistent sodium current in mouse preBötzinger Complex neurons and respiratory rhythm generation.
    Pace RW; Mackay DD; Feldman JL; Del Negro CA
    J Physiol; 2007 Apr; 580(Pt. 2):485-96. PubMed ID: 17272351
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Historical reflections on the afterhyperpolarization--firing rate relation of vertebrate spinal neurons.
    Stauffer EK; McDonagh JC; Hornby TG; Reinking RM; Stuart DG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Feb; 193(2):145-58. PubMed ID: 17192827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.