These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16728637)

  • 1. Carbon nanotubes as high-pressure cylinders and nanoextruders.
    Sun L; Banhart F; Krasheninnikov AV; Rodríguez-Manzo JA; Terrones M; Ajayan PM
    Science; 2006 May; 312(5777):1199-202. PubMed ID: 16728637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capturing the motion of molecular nanomaterials encapsulated within carbon nanotubes with ultrahigh temporal resolution.
    Warner JH; Ito Y; Rümmeli MH; Büchner B; Shinohara H; Briggs GA
    ACS Nano; 2009 Oct; 3(10):3037-44. PubMed ID: 19743832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synthesis of high coercivity cobalt-in-carbon nanotube hybrid structures and their optical limiting properties.
    Narayanan TN; Suchand Sandeep CS; Shaijumon MM; Ajayan PM; Philip R; Anantharaman MR
    Nanotechnology; 2009 Jul; 20(28):285702. PubMed ID: 19550014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of ordered ice nanotubes inside carbon nanotubes.
    Koga K; Gao GT; Tanaka H; Zeng XC
    Nature; 2001 Aug; 412(6849):802-5. PubMed ID: 11518961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and magnetic properties of Ni nanospheres encapsulated in a fullerene-like carbon.
    Pol SV; Pol VG; Frydman A; Churilov GN; Gedanken A
    J Phys Chem B; 2005 May; 109(19):9495-8. PubMed ID: 16852141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A liquid-Ga-filled carbon nanotube: a miniaturized temperature sensor and electrical switch.
    Dorozhkin PS; Tovstonog SV; Golberg D; Zhan J; Ishikawa Y; Shiozawa M; Nakanishi H; Nakata K; Bando Y
    Small; 2005 Nov; 1(11):1088-93. PubMed ID: 17193401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulation of pt-labelled DNA molecules inside carbon nanotubes.
    Cui D; Ozkan CS; Ravindran S; Kong Y; Gao H
    Mech Chem Biosyst; 2004 Jun; 1(2):113-21. PubMed ID: 16783937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotubes in scaffolds for tissue engineering.
    Edwards SL; Werkmeister JA; Ramshaw JA
    Expert Rev Med Devices; 2009 Sep; 6(5):499-505. PubMed ID: 19751122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements.
    Peng B; Locascio M; Zapol P; Li S; Mielke SL; Schatz GC; Espinosa HD
    Nat Nanotechnol; 2008 Oct; 3(10):626-31. PubMed ID: 18839003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes.
    Chen D; Liu T; Zhou X; Tjiu WC; Hou H
    J Phys Chem B; 2009 Jul; 113(29):9741-8. PubMed ID: 19603838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures.
    Gautam UK; Fang X; Bando Y; Zhan J; Golberg D
    ACS Nano; 2008 May; 2(5):1015-21. PubMed ID: 19206499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoengineering heat transfer performance at carbon nanotube interfaces.
    Xu Z; Buehler MJ
    ACS Nano; 2009 Sep; 3(9):2767-75. PubMed ID: 19702296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformation of carbon nanotubes by exposure to water vapor.
    Rossi MP; Gogotsi Y; Kornev KG
    Langmuir; 2009 Mar; 25(5):2804-10. PubMed ID: 19437757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid gallium columns sheathed with carbon: Bulk synthesis and manipulation.
    Zhan J; Bando Y; Hu J; Golberg D; Nakanishi H
    J Phys Chem B; 2005 Jun; 109(23):11580-4. PubMed ID: 16852421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes.
    Cruz-Silva E; Cullen DA; Gu L; Romo-Herrera JM; Muñoz-Sandoval E; López-Urías F; Sumpter BG; Meunier V; Charlier JC; Smith DJ; Terrones H; Terrones M
    ACS Nano; 2008 Mar; 2(3):441-8. PubMed ID: 19206568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of deformation and rupture of super carbon nanotubes under tension.
    Qin Z; Feng XQ; Zou J; Yin Y; Yu SW
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6274-82. PubMed ID: 19205194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.