BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 1672874)

  • 1. Coexistence of GABA and glutamate in mossy fiber terminals of the primate hippocampus: an ultrastructural study.
    Sandler R; Smith AD
    J Comp Neurol; 1991 Jan; 303(2):177-92. PubMed ID: 1672874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiny nonpyramidal neurons in the CA3 region of the rat hippocampus are glutamate-like immunoreactive and receive convergent mossy fiber input.
    Soriano E; Frotscher M
    J Comp Neurol; 1993 Jul; 333(3):435-48. PubMed ID: 8102385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural description of glutamate-, aspartate-, taurine-, and glycine-like immunoreactive terminals from five rat brain regions.
    Clements JR; Magnusson KR; Beitz AJ
    J Electron Microsc Tech; 1990 May; 15(1):49-66. PubMed ID: 1971014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of glutamate, glycine, and GABA immunolabeling in four synaptic terminal classes in the lateral superior olive of the guinea pig.
    Helfert RH; Juiz JM; Bledsoe SC; Bonneau JM; Wenthold RJ; Altschuler RA
    J Comp Neurol; 1992 Sep; 323(3):305-25. PubMed ID: 1360986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mossy cells of the rat fascia dentata are glutamate-immunoreactive.
    Soriano E; Frotscher M
    Hippocampus; 1994 Feb; 4(1):65-9. PubMed ID: 7914798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal development of CA3 pyramidal neurons and their afferents in the Ammon's horn of rhesus monkeys.
    Seress L; Ribak CE
    Hippocampus; 1995; 5(3):217-31. PubMed ID: 7550617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation.
    Seress L; Gulyás AI; Ferrer I; Tunon T; Soriano E; Freund TF
    J Comp Neurol; 1993 Nov; 337(2):208-30. PubMed ID: 8276998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of calbindin D28k immunoreactive cells and fibers in the monkey hippocampus, subicular complex and entorhinal cortex. A light and electron microscopic study.
    Seress L; Léránth C; Frotscher M
    J Hirnforsch; 1994; 35(4):473-86. PubMed ID: 7884210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural heterogeneity of enkephalin-containing terminals in the rat hippocampal formation.
    Commons KG; Milner TA
    J Comp Neurol; 1995 Jul; 358(3):324-42. PubMed ID: 7560290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural morphology, synaptic relationships, and CGRP immunoreactivity of physiologically identified C-fiber terminals in the monkey spinal cord.
    Alvarez FJ; Kavookjian AM; Light AR
    J Comp Neurol; 1993 Mar; 329(4):472-90. PubMed ID: 7681070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electron microscopic, immunogold analysis of glutamate and glutamine in terminals of rat spinocerebellar fibers.
    Ji ZQ; Aas JE; Laake J; Walberg F; Ottersen OP
    J Comp Neurol; 1991 May; 307(2):296-310. PubMed ID: 1677366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron microscopic immunocytochemical study of the distribution of parvalbumin-containing neurons and axon terminals in the primate dentate gyrus and Ammon's horn.
    Ribak CE; Seress L; Leranth C
    J Comp Neurol; 1993 Jan; 327(2):298-321. PubMed ID: 8425946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redistribution of neuroactive amino acids in hippocampus and striatum during hypoglycemia: a quantitative immunogold study.
    Gundersen V; Fonnum F; Ottersen OP; Storm-Mathisen J
    J Cereb Blood Flow Metab; 2001 Jan; 21(1):41-51. PubMed ID: 11149667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticity of GABA- and glutamate-containing terminals in the mouse thalamic ventrobasal complex deprived of vibrissal afferents: an immunogold-electron microscopic study.
    Hámori J; Takács J; Verley R; Petrusz P; Farkas-Bargeton E
    J Comp Neurol; 1990 Dec; 302(4):739-48. PubMed ID: 1982005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunogold electron microscopic demonstration of glutamate and GABA in normal and deafferented cerebellar cortex: correlation between transmitter content and synaptic vesicle size.
    Hámori J; Takács J; Petrusz P
    J Histochem Cytochem; 1990 Dec; 38(12):1767-77. PubMed ID: 1979341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamine as a precursor for transmitter glutamate, aspartate and GABA in the cerebellum: a role for phosphate-activated glutaminase.
    Holten AT; Gundersen V
    J Neurochem; 2008 Feb; 104(4):1032-42. PubMed ID: 17986214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate and GABA immunocytochemical electron microscopy in the hippocampal dentate gyrus of normal and genetic absence epilepsy rats.
    Sirvanci S; Meshul CK; Onat F; San T
    Brain Res; 2005 Aug; 1053(1-2):108-15. PubMed ID: 16038886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural and immunocytochemical observations on the superior olivary complex of the mustached bat.
    Vater M
    J Comp Neurol; 1995 Jul; 358(2):155-80. PubMed ID: 7560280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synapses of optic axons with GABA- and glutamate-containing elements in the optic tectum of Bufo marinus.
    Gábriel R; Straznicky C
    J Hirnforsch; 1995; 36(3):329-40. PubMed ID: 7560905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of input synapses from processes exhibiting GABA- or glutamate-like immunoreactivity onto terminals of prosternal filiform afferents in the locust.
    Watson AH; Pflüger HJ
    J Comp Neurol; 1994 May; 343(4):617-29. PubMed ID: 7913475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.