These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Microfluidics device for single cell gene expression analysis in Saccharomyces cerevisiae. Ryley J; Pereira-Smith OM Yeast; 2006; 23(14-15):1065-73. PubMed ID: 17083143 [TBL] [Abstract][Full Text] [Related]
3. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Hirose O; Yoshida R; Imoto S; Yamaguchi R; Higuchi T; Charnock-Jones DS; Print C; Miyano S Bioinformatics; 2008 Apr; 24(7):932-42. PubMed ID: 18292116 [TBL] [Abstract][Full Text] [Related]
4. Probing gene expression in live cells, one protein molecule at a time. Yu J; Xiao J; Ren X; Lao K; Xie XS Science; 2006 Mar; 311(5767):1600-3. PubMed ID: 16543458 [TBL] [Abstract][Full Text] [Related]
5. Single-cell analysis of gene expression by fluorescence microscopy. Miyashiro T; Goulian M Methods Enzymol; 2007; 423():458-75. PubMed ID: 17609146 [TBL] [Abstract][Full Text] [Related]
6. Detecting biological associations between genes based on the theory of phase synchronization. Kim CS; Riikonen P; Salakoski T Biosystems; 2008 May; 92(2):99-113. PubMed ID: 18289772 [TBL] [Abstract][Full Text] [Related]
7. MARD: a new method to detect differential gene expression in treatment-control time courses. Cheng C; Ma X; Yan X; Sun F; Li LM Bioinformatics; 2006 Nov; 22(21):2650-7. PubMed ID: 16928738 [TBL] [Abstract][Full Text] [Related]
9. Show and tell: visualizing gene expression in living cells. Rafalska-Metcalf IU; Janicki SM J Cell Sci; 2007 Jul; 120(Pt 14):2301-7. PubMed ID: 17606985 [TBL] [Abstract][Full Text] [Related]
10. Monitoring organelle turnover in yeast using fluorescent protein tags. Devenish RJ; Prescott M; Turcic K; Mijaljica D Methods Enzymol; 2008; 451():109-31. PubMed ID: 19185717 [No Abstract] [Full Text] [Related]
11. Description of a baby machine for Saccharomyces cerevisiae. Helmstetter CE New Biol; 1991 Nov; 3(11):1089-96. PubMed ID: 1777482 [TBL] [Abstract][Full Text] [Related]
12. A new framework for identifying combinatorial regulation of transcription factors: a case study of the yeast cell cycle. Wang J J Biomed Inform; 2007 Dec; 40(6):707-25. PubMed ID: 17418646 [TBL] [Abstract][Full Text] [Related]
13. The Saccharomyces cerevisiae Wss1 protein is only present in mother cells. van Heusden GP; Steensma HY FEMS Microbiol Lett; 2008 May; 282(1):100-4. PubMed ID: 18336552 [TBL] [Abstract][Full Text] [Related]
16. Regulated transcription of the Saccharomyces cerevisiae phosphatidylinositol biosynthetic gene, PIS1, yields pleiotropic effects on phospholipid synthesis. Jani NM; Lopes JM FEMS Yeast Res; 2009 Jun; 9(4):552-64. PubMed ID: 19456874 [TBL] [Abstract][Full Text] [Related]
17. Techniques for following the movement of single RNAs in living cells. Urbinati CR; Long RM Wiley Interdiscip Rev RNA; 2011; 2(4):601-9. PubMed ID: 21957047 [TBL] [Abstract][Full Text] [Related]
18. Superstability of the yeast cell-cycle dynamics: ensuring causality in the presence of biochemical stochasticity. Braunewell S; Bornholdt S J Theor Biol; 2007 Apr; 245(4):638-43. PubMed ID: 17204290 [TBL] [Abstract][Full Text] [Related]
19. The Cartographers toolbox: building bigger and better human protein interaction networks. Sanderson CM Brief Funct Genomic Proteomic; 2009 Jan; 8(1):1-11. PubMed ID: 19282470 [TBL] [Abstract][Full Text] [Related]
20. Exploring the functional landscape of gene expression: directed search of large microarray compendia. Hibbs MA; Hess DC; Myers CL; Huttenhower C; Li K; Troyanskaya OG Bioinformatics; 2007 Oct; 23(20):2692-9. PubMed ID: 17724061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]