These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16729092)

  • 1. Atomic-based stabilization for laser-pumped atomic clocks.
    Gerginov V; Shah V; Knappe S; Hollberg L; Kitching J
    Opt Lett; 2006 Jun; 31(12):1851-3. PubMed ID: 16729092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact optically pumped cesium beam atomic clock with a 5-day frequency stability of 7×10
    He X; Fang S; Yuan Z; Xie W; Chen N; Xiong Z; Wang Q; Qi X; Chen X
    Appl Opt; 2021 Dec; 60(34):10761-10765. PubMed ID: 35200944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser with 10
    Shang H; Zhang T; Miao J; Shi T; Pan D; Zhao X; Wei Q; Yang L; Chen J
    Opt Express; 2020 Mar; 28(5):6868-6880. PubMed ID: 32225925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability.
    Knappe S; Gerginov V; Schwindt PD; Shah V; Robinson HG; Hollberg L; Kitching J
    Opt Lett; 2005 Sep; 30(18):2351-3. PubMed ID: 16196316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Barometric Effect in Vapor-Cell Atomic Clocks.
    Moreno W; Pellaton M; Affolderbach C; Mileti G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1500-1503. PubMed ID: 29993546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of Temperature-Induced Light-Shift Effects in Miniaturized Atomic Clocks.
    Vicarini R; Abdel Hafiz M; Maurice V; Passilly N; Kroemer E; Ribetto L; Gaff V; Gorecki C; Galliou S; Boudot R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Dec; 66(12):1962-1967. PubMed ID: 31395545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-orbit operation of an atomic clock based on laser-cooled
    Liu L; Lü DS; Chen WB; Li T; Qu QZ; Wang B; Li L; Ren W; Dong ZR; Zhao JB; Xia WB; Zhao X; Ji JW; Ye MF; Sun YG; Yao YY; Song D; Liang ZG; Hu SJ; Yu DH; Hou X; Shi W; Zang HG; Xiang JF; Peng XK; Wang YZ
    Nat Commun; 2018 Jul; 9(1):2760. PubMed ID: 30042419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing Cavity-Pulling Shift in Ramsey-Operated Compact Clocks.
    Gozzelino M; Micalizio S; Levi F; Godone A; Calosso CE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jul; 65(7):1294-1301. PubMed ID: 29993382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Term Stability Analysis Toward <10
    Almat N; Gharavipour M; Moreno W; Gruet F; Affolderbach C; Mileti G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):207-216. PubMed ID: 31514134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsed vapor cell atomic clock with a differential Faraday rotation angle detection.
    Wang KM; Du ZJ; Liu YY; Yu ZJ; Yan SB; Liu T; Dong RF; Zhang SG
    Opt Express; 2021 Nov; 29(23):38527-38539. PubMed ID: 34808904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Frequency-Doubled 1.5- m Lasers for High-Performance Rb Clocks.
    Almat N; Moreno W; Pellaton M; Gruet F; Affolderbach C; Mileti G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):919-926. PubMed ID: 29856708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfabricated Vapor Cells with Reflective Sidewalls for Chip Scale Atomic Sensors.
    Han R; You Z; Zhang F; Xue H; Ruan Y
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of laser sources with different spectral properties on the performance of vapor cell atomic clocks based on lin||lin CPT.
    Breschi E; Kazakov G; Lammegger R; Matisov B; Windholz L; Mileti G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):926-30. PubMed ID: 19473911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of FM spectroscopy parameters for a frequency locking loop in small scale CPT based atomic clocks.
    Ben-Aroya I; Kahanov M; Eisenstein G
    Opt Express; 2007 Nov; 15(23):15060-5. PubMed ID: 19550789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsed optically pumped atomic clock with zero-dead-time.
    Lin H; Lin J; Deng J; Zhang S; Wang Y
    Rev Sci Instrum; 2017 Dec; 88(12):123103. PubMed ID: 29289225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A superradiant clock laser on a magic wavelength optical lattice.
    Maier T; Kraemer S; Ostermann L; Ritsch H
    Opt Express; 2014 Jun; 22(11):13269-79. PubMed ID: 24921521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Compact Laser System for the Pulsed Optically Pumped Rubidium Cell Atomic Clock.
    Yu Z; Du Z; Liu Y; Wang K; Xue W; Zhang S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Mar; 69(3):1137-1146. PubMed ID: 34982681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operation of an optical atomic clock with a Brillouin laser subsystem.
    Loh W; Stuart J; Reens D; Bruzewicz CD; Braje D; Chiaverini J; Juodawlkis PW; Sage JM; McConnell R
    Nature; 2020 Dec; 588(7837):244-249. PubMed ID: 33299197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations on continuous and pulsed interrogation for a CPT atomic clock.
    Castagna N; Boudot R; Guérandel S; De Clercq E; Dimarcq N; Clairon A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):246-53. PubMed ID: 19251511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cs vapor microcells with Ne-He buffer gas mixture for high operation-temperature miniature atomic clocks.
    Kroemer E; Abdel Hafiz M; Maurice V; Fouilland B; Gorecki C; Boudot R
    Opt Express; 2015 Jul; 23(14):18373-80. PubMed ID: 26191895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.