BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 16729290)

  • 1. Estimation of strength in different extra Watson-Crick hydrogen bonds in DNA double helices through quantum chemical studies.
    Bandyopadhyay D; Bhattacharyya D
    Biopolymers; 2006 Oct; 83(3):313-25. PubMed ID: 16729290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of DNA flexibility.
    Bhattacharyya D; Majumdar R
    Indian J Biochem Biophys; 2001; 38(1-2):16-9. PubMed ID: 11563325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does the A.T or G.C base-pair possess enhanced stability? Quantifying the effects of CH...O interactions and secondary interactions on base-pair stability using a phenomenological analysis and ab initio calculations.
    Quinn JR; Zimmerman SC; Del Bene JE; Shavitt I
    J Am Chem Soc; 2007 Jan; 129(4):934-41. PubMed ID: 17243830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Watson-Crick base pairing in RNA. quantum chemical analysis of the cis Watson-Crick/sugar edge base pair family.
    Sponer JE; Spacková N; Kulhanek P; Leszczynski J; Sponer J
    J Phys Chem A; 2005 Mar; 109(10):2292-301. PubMed ID: 16838999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remarkable metal counterion effect on the internucleotide J-couplings and chemical shifts of the N-H...N hydrogen bonds in the W-C base pairs.
    Li H; Cukier RI; Bu Y
    J Phys Chem B; 2008 Jul; 112(30):9174-81. PubMed ID: 18598072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations.
    Mládek A; Sharma P; Mitra A; Bhattacharyya D; Sponer J; Sponer JE
    J Phys Chem B; 2009 Feb; 113(6):1743-55. PubMed ID: 19152254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis.
    Yurenko YP; Zhurakivsky RO; Samijlenko SP; Hovorun DM
    J Biomol Struct Dyn; 2011 Aug; 29(1):51-65. PubMed ID: 21696225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-H.O hydrogen bonds in minor groove of A-tracts in DNA double helices.
    Ghosh A; Bansal M
    J Mol Biol; 1999 Dec; 294(5):1149-58. PubMed ID: 10600373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(6):993-1022. PubMed ID: 23730732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies.
    Roy A; Panigrahi S; Bhattacharyya M; Bhattacharyya D
    J Phys Chem B; 2008 Mar; 112(12):3786-96. PubMed ID: 18318519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strength of Calpha-H...O=C hydrogen bonds in transmembrane proteins.
    Park H; Yoon J; Seok C
    J Phys Chem B; 2008 Jan; 112(3):1041-8. PubMed ID: 18154287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the aromatic character of the heterocyclic bases of DNA and RNA.
    Cyrański MK; Gilski M; Jaskólski M; Krygowski TM
    J Org Chem; 2003 Oct; 68(22):8607-13. PubMed ID: 14575493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical investigation of hydrogen bonds between CO and HNF2, H2NF, and HNO.
    Li AY
    J Phys Chem A; 2006 Sep; 110(37):10805-16. PubMed ID: 16970375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red-shifted hydrogen bonds and blue-shifted van der Waals contact in the standard Watson-Crick adenine-thymine base pair.
    Zhou PP; Qiu WY
    J Phys Chem A; 2009 Sep; 113(38):10306-20. PubMed ID: 19715282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fingerprints of bonding motifs in DNA duplexes of adenine and thymine revealed from circular dichroism: synchrotron radiation experiments and TDDFT calculations.
    Munksgaard Nielsen L; Holm AI; Varsano D; Kadhane U; Hoffmann SV; Di Felice R; Rubio A; Brøndsted Nielsen S
    J Phys Chem B; 2009 Jul; 113(28):9614-9. PubMed ID: 19537699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of interaction energies of substituted hydrogen-bonded Watson-Crick cytosine:guanine(8X) base pairs.
    Xue C; Popelier PL
    J Phys Chem B; 2009 Mar; 113(10):3245-50. PubMed ID: 19260717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical studies on the intermolecular interactions of potentially primordial base-pair analogues.
    Sponer JE; Vázquez-Mayagoitia A; Sumpter BG; Leszczynski J; Sponer J; Otyepka M; Banás P; Fuentes-Cabrera M
    Chemistry; 2010 Mar; 16(10):3057-65. PubMed ID: 20119984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the role of hydrogen bonds in the stability of base pairs in double-helical DNA.
    Every AE; Russu IM
    Biopolymers; 2007 Oct 5-15; 87(2-3):165-73. PubMed ID: 17636510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of adenine adducts with thymine: a computational study.
    Sahu PK; Kuo CW; Lee SL
    J Phys Chem B; 2007 Mar; 111(11):2991-8. PubMed ID: 17388410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.