BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 16729730)

  • 21. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions.
    Deng Z; Chuaqui C; Singh J
    J Med Chem; 2004 Jan; 47(2):337-44. PubMed ID: 14711306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pharmacophore modeling and in silico screening for new KDR kinase inhibitors.
    Yu H; Wang Z; Zhang L; Zhang J; Huang Q
    Bioorg Med Chem Lett; 2007 Apr; 17(8):2126-33. PubMed ID: 17306530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery of potential ZAP-70 kinase inhibitors: pharmacophore design, database screening and docking studies.
    Sanam R; Vadivelan S; Tajne S; Narasu L; Rambabu G; Jagarlapudi SA
    Eur J Med Chem; 2009 Dec; 44(12):4793-800. PubMed ID: 19674816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors.
    Krüger DM; Evers A
    ChemMedChem; 2010 Jan; 5(1):148-58. PubMed ID: 19908272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pharmacophore modeling and virtual screening for the discovery of new transforming growth factor-beta type I receptor (ALK5) inhibitors.
    Ren JX; Li LL; Zou J; Yang L; Yang JL; Yang SY
    Eur J Med Chem; 2009 Nov; 44(11):4259-65. PubMed ID: 19640613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative assessment of scoring functions on a diverse test set.
    Cheng T; Li X; Li Y; Liu Z; Wang R
    J Chem Inf Model; 2009 Apr; 49(4):1079-93. PubMed ID: 19358517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein-ligand docking accounting for receptor side chain and global flexibility in normal modes: evaluation on kinase inhibitor cross docking.
    May A; Zacharias M
    J Med Chem; 2008 Jun; 51(12):3499-506. PubMed ID: 18517186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure-based virtual screening approach to the discovery of p38 MAP kinase inhibitors.
    Choi H; Park HJ; Shin JC; Ko HS; Lee JK; Lee S; Park H; Hong S
    Bioorg Med Chem Lett; 2012 Mar; 22(6):2195-9. PubMed ID: 22342625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beyond the virtual screening paradigm: structure-based searching for new lead compounds.
    Schlosser J; Rarey M
    J Chem Inf Model; 2009 Apr; 49(4):800-9. PubMed ID: 19354328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein structures in virtual screening: a case study with CDK2.
    Thomas MP; McInnes C; Fischer PM
    J Med Chem; 2006 Jan; 49(1):92-104. PubMed ID: 16392795
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding estimation after refinement, a new automated procedure for the refinement and rescoring of docked ligands in virtual screening.
    Rastelli G; Degliesposti G; Del Rio A; Sgobba M
    Chem Biol Drug Des; 2009 Mar; 73(3):283-6. PubMed ID: 19207463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The discovery of novel vascular endothelial growth factor receptor tyrosine kinases inhibitors: pharmacophore modeling, virtual screening and docking studies.
    Yu H; Wang Z; Zhang L; Zhang J; Huang Q
    Chem Biol Drug Des; 2007 Mar; 69(3):204-11. PubMed ID: 17441906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example.
    Mahasenan KV; Li C
    J Chem Inf Model; 2012 May; 52(5):1345-55. PubMed ID: 22540736
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Virtual screening to enrich a compound collection with CDK2 inhibitors using docking, scoring, and composite scoring models.
    Cotesta S; Giordanetto F; Trosset JY; Crivori P; Kroemer RT; Stouten PF; Vulpetti A
    Proteins; 2005 Sep; 60(4):629-43. PubMed ID: 16028223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deciphering ligand dependent degree of binding site closure and its implication in inhibitor design: A modeling study on human adenosine kinase.
    Bhutoria S; Ghoshal N
    J Mol Graph Model; 2010 Feb; 28(6):577-91. PubMed ID: 20089430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. kinDOCK: a tool for comparative docking of protein kinase ligands.
    Martin L; Catherinot V; Labesse G
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W325-9. PubMed ID: 16845019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of novel inhibitors of tropomyosin-related kinase A through the structure-based virtual screening with homology-modeled protein structure.
    Park H; Chi O; Kim J; Hong S
    J Chem Inf Model; 2011 Nov; 51(11):2986-93. PubMed ID: 22017333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Postprocessing of protein-ligand docking poses using linear response MM-PB/SA: application to Wee1 kinase inhibitors.
    Wichapong K; Lawson M; Pianwanit S; Kokpol S; Sippl W
    J Chem Inf Model; 2010 Sep; 50(9):1574-88. PubMed ID: 20712342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-throughput docking as a source of novel drug leads.
    Alvarez JC
    Curr Opin Chem Biol; 2004 Aug; 8(4):365-70. PubMed ID: 15288245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.