These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16729799)

  • 1. A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalized homogeneous flows.
    Daivis PJ; Todd BD
    J Chem Phys; 2006 May; 124(19):194103. PubMed ID: 16729799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A validation of the p-SLLOD equations of motion for homogeneous steady-state flows.
    Edwards BJ; Baig C; Keffer DJ
    J Chem Phys; 2006 May; 124(19):194104. PubMed ID: 16729800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proper approach for nonequilibrium molecular dynamics simulations of planar elongational flow.
    Baig C; Edwards BJ; Keffer DJ; Cochran HD
    J Chem Phys; 2005 Mar; 122(11):114103. PubMed ID: 15836197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Operator splitting algorithm for isokinetic SLLOD molecular dynamics.
    Pan G; Ely JF; McCabe C; Isbister DJ
    J Chem Phys; 2005 Mar; 122(9):094114. PubMed ID: 15836119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaotic properties of planar elongational flow and planar shear flow: Lyapunov exponents, conjugate-pairing rule, and phase space contraction.
    Frascoli F; Searles DJ; Todd BD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046206. PubMed ID: 16711916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isomorph invariance of Couette shear flows simulated by the SLLOD equations of motion.
    Separdar L; Bailey NP; Schrøder TB; Davatolhagh S; Dyre JC
    J Chem Phys; 2013 Apr; 138(15):154505. PubMed ID: 23614428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An examination of the validity of nonequilibrium molecular-dynamics simulation algorithms for arbitrary steady-state flows.
    Edwards BJ; Baig C; Keffer DJ
    J Chem Phys; 2005 Sep; 123(11):114106. PubMed ID: 16392550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic derivation of discrete hydrodynamics.
    Español P; Anero JG; Zúñiga I
    J Chem Phys; 2009 Dec; 131(24):244117. PubMed ID: 20059064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovering the Crooks equation for dynamical systems in the isothermal-isobaric ensemble: a strategy based on the equations of motion.
    Chelli R; Marsili S; Barducci A; Procacci P
    J Chem Phys; 2007 Jan; 126(4):044502. PubMed ID: 17286482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of two- and three-dimensional dense-fluid shear flows via nonequilibrium molecular dynamics: comparison of time-and-space-averaged stresses from homogeneous Doll's and Sllod shear algorithms with those from boundary-driven shear.
    Hoover WG; Hoover CG; Petravic J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046701. PubMed ID: 18999555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Hamiltonian equations of motion with a conserved energy.
    Sergi A; Ferrario M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056125. PubMed ID: 11736032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Jarzynski identity derived from general Hamiltonian or non-Hamiltonian dynamics reproducing NVT or NPT ensembles.
    Cuendet MA
    J Chem Phys; 2006 Oct; 125(14):144109. PubMed ID: 17042581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation in the grand canonical ensemble.
    Eslami H; Müller-Plathe F
    J Comput Chem; 2007 Jul; 28(10):1763-73. PubMed ID: 17342717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuum equations for magnetic and dielectric fluids with internal rotations.
    Rosensweig RE
    J Chem Phys; 2004 Jul; 121(3):1228-42. PubMed ID: 15260664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic derivation of particle-based coarse-grained dynamics.
    Izvekov S
    J Chem Phys; 2013 Apr; 138(13):134106. PubMed ID: 23574207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rovibrational molecular hamiltonian in mixed bond-angle and umbrella-like coordinates.
    Makarewicz J; Skalozub A
    J Phys Chem A; 2007 Aug; 111(32):7860-9. PubMed ID: 17637044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics in the isothermal-isobaric ensemble: the requirement of a "shell" molecule. III. Discontinuous potentials.
    Uline MJ; Corti DS
    J Chem Phys; 2008 Jul; 129(1):014107. PubMed ID: 18624470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hamilton-Jacobi modelling of relative motion for formation flying.
    Kolemen E; Kasdin NJ; Gurfil P
    Ann N Y Acad Sci; 2005 Dec; 1065():93-111. PubMed ID: 16510405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic derivation of amplitude equations and normal forms for dynamical systems.
    Ipsen M; Hynne F; Sorensen PG
    Chaos; 1998 Dec; 8(4):834-852. PubMed ID: 12779791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hamiltonian formalism for semiflexible molecules in Cartesian coordinates.
    Kneller GR
    J Chem Phys; 2006 Sep; 125(11):114107. PubMed ID: 16999466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.