BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16729834)

  • 1. The impact of the pi-electron conjugation length on the three-photon absorption cross section of fluorene derivatives.
    Cohanoschi I; Belfield KD; Toro C; Yao S; Hernández FE
    J Chem Phys; 2006 May; 124(19):194707. PubMed ID: 16729834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent effects on the three-photon absorption cross-section of a highly conjugated fluorene derivative.
    Cohanoschi I; Belfield KD; Toro C; Hernández FE
    J Chem Phys; 2006 Oct; 125(16):161102. PubMed ID: 17092056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of electron acceptor on three-photon absorption cross-section of the fluorene derivatives.
    Liu J; Li G; Wang Y
    J Phys Chem A; 2012 Jul; 116(28):7445-51. PubMed ID: 22765045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-photon absorption cross-section enhancement in two symmetrical fluorene-based molecules.
    Liu J; Mao Y; Huang M; Gu Y; Zhang W
    J Phys Chem A; 2007 Sep; 111(37):9013-8. PubMed ID: 17722895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The correction vector method for three-photon absorption: the effects of pi conjugation in extended rylenebis(dicarboximide)s.
    Yi Y; Zhu L; Shuai Z
    J Chem Phys; 2006 Oct; 125(16):164505. PubMed ID: 17092103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of conjugation length, electron donor and acceptor strengths on two-photon absorption cross sections of asymmetric zinc-porphyrin derivatives.
    Rubio-Pons O; Luo Y; Agren H
    J Chem Phys; 2006 Mar; 124(9):94310. PubMed ID: 16526860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trivalent boron as an acceptor in donor-pi-acceptor-type compounds for single- and two-photon excited fluorescence.
    Liu ZQ; Fang Q; Wang D; Cao DX; Xue G; Yu WT; Lei H
    Chemistry; 2003 Oct; 9(20):5074-84. PubMed ID: 14562325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel 2,1,3-benzothiadiazole-based red-fluorescent dyes with enhanced two-photon absorption cross-sections.
    Kato S; Matsumoto T; Shigeiwa M; Gorohmaru H; Maeda S; Ishi-i T; Mataka S
    Chemistry; 2006 Mar; 12(8):2303-17. PubMed ID: 16363008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorene-based pi-conjugated oligomers for efficient three-photon excited photoluminescence and lasing.
    Feng XJ; Wu PL; Tam HL; Li KF; Wong MS; Cheah KW
    Chemistry; 2009 Nov; 15(43):11681-91. PubMed ID: 19774568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of conjugation length and resonance enhancement on two-photon absorption in phenylene-vinylene oligomers.
    Johnsen M; Paterson MJ; Arnbjerg J; Christiansen O; Nielsen CB; Jørgensen M; Ogilby PR
    Phys Chem Chem Phys; 2008 Feb; 10(8):1177-91. PubMed ID: 18270620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon absorption properties of azulenyl compounds having a conjugated ketone backbone.
    Hirakawa S; Kawamata J; Suzuki Y; Tani S; Murafuji T; Kasatani K; Antonov L; Kamada K; Ohta K
    J Phys Chem A; 2008 Jun; 112(23):5198-207. PubMed ID: 18481839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, two-photon absorption and optical limiting properties of multi-branched styryl derivatives based on 1,3,5-triazine.
    Jiang Y; Wang Y; Wang B; Yang J; He N; Qian S; Hua J
    Chem Asian J; 2011 Jan; 6(1):157-65. PubMed ID: 20973027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of two-photon absorption properties of a series of ferrocene-based chromophores.
    Zhang XB; Feng JK; Ren AM; Sun CC
    J Phys Chem A; 2006 Nov; 110(44):12222-30. PubMed ID: 17078618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzothiazole-based fluorophores of donor-pi-acceptor-pi-donor type displaying high two-photon absorption.
    Hrobáriková V; Hrobárik P; Gajdos P; Fitilis I; Fakis M; Persephonis P; Zahradník P
    J Org Chem; 2010 May; 75(9):3053-68. PubMed ID: 20359209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant enhancement of two-photon absorption in substituted fluorene molecules.
    Hales JM; Hagan DJ; Van Stryland EW; Schafer KJ; Morales AR; Belfield KD; Pacher P; Kwon O; Zojer E; Bredas JL
    J Chem Phys; 2004 Aug; 121(7):3152-60. PubMed ID: 15291625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One- and two-photon absorption of three-coordinate compounds with different centers (B,Al,N) and a 2,2'-dipyridylnitrogen functional group.
    Liu XJ; Feng JK; Ren AM; Cheng H; Zhou X
    J Chem Phys; 2004 Nov; 121(17):8253-60. PubMed ID: 15511145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon absorption cross section determination for fluorene derivatives: analysis of the methodology and elucidation of the origin of the absorption processes.
    Belfield KD; Bondar MV; Hernandez FE; Przhonska OV; Yao S
    J Phys Chem B; 2007 Nov; 111(44):12723-9. PubMed ID: 17939706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multipolar symmetric squaraines with large two-photon absorption cross-sections in the NIR region.
    Collini E; Carlotto S; Ferrante C; Bozio R; Polimeno A; Bloino J; Barone V; Ronchi E; Beverina L; Pagani GA
    Phys Chem Chem Phys; 2011 Jul; 13(25):12087-94. PubMed ID: 21625702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of the two-photon absorption cross section on the conjugation of the phenylacetylene linker in dipolar donor-bridge-acceptor chromophores.
    Lee S; Thomas KR; Thayumanavan S; Bardeen CJ
    J Phys Chem A; 2005 Nov; 109(43):9767-74. PubMed ID: 16833290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of star-shaped monodisperse oligo(9,9-di-n-octylfluorene-2,7-vinylene)s functionalized truxenes with two-photon absorption properties.
    Zhou H; Zhao X; Huang T; Lu R; Zhang H; Qi X; Xue P; Liu X; Zhang X
    Org Biomol Chem; 2011 Mar; 9(5):1600-7. PubMed ID: 21243155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.