These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 16730108)
1. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Murciego AM; Sánchez AG; González MA; Gil EP; Gordillo CT; Fernández JC; Triguero TB Environ Pollut; 2007 Jan; 145(1):15-21. PubMed ID: 16730108 [TBL] [Abstract][Full Text] [Related]
2. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Okkenhaug G; Zhu YG; Luo L; Lei M; Li X; Mulder J Environ Pollut; 2011 Oct; 159(10):2427-34. PubMed ID: 21767897 [TBL] [Abstract][Full Text] [Related]
3. Antimony speciation in terrestrial plants. Comparative studies on extraction methods. Miravet R; Bonilla E; López-Sánchez JF; Rubio R J Environ Monit; 2005 Dec; 7(12):1207-13. PubMed ID: 16307073 [TBL] [Abstract][Full Text] [Related]
4. Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities. Álvarez-Ayuso E; Otones V; Murciego A; García-Sánchez A; Regina IS Sci Total Environ; 2012 Nov; 439():35-43. PubMed ID: 23063636 [TBL] [Abstract][Full Text] [Related]
5. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Cidu R; Biddau R; Dore E; Vacca A; Marini L Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381 [TBL] [Abstract][Full Text] [Related]
6. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. Moreno-Jiménez E; Peñalosa JM; Manzano R; Carpena-Ruiz RO; Gamarra R; Esteban E J Hazard Mater; 2009 Mar; 162(2-3):854-9. PubMed ID: 18603359 [TBL] [Abstract][Full Text] [Related]
7. Effect of antimony in soils of an Sb mine on the photosynthetic pigments and antioxidant system of Dittrichia viscosa leaves. Garrido I; Ortega A; Hernández M; Fernández-Pozo L; Cabezas J; Espinosa F Environ Geochem Health; 2021 Apr; 43(4):1367-1383. PubMed ID: 32562108 [TBL] [Abstract][Full Text] [Related]
8. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils. Steely S; Amarasiriwardena D; Xing B Environ Pollut; 2007 Jul; 148(2):590-8. PubMed ID: 17258851 [TBL] [Abstract][Full Text] [Related]
9. Mobilisation and transport of arsenic and antimony in the adjacent environment of Yata gold mine, Guizhou province, China. Zhang G; Liu CQ; Liu H; Hu J; Han G; Li L J Environ Monit; 2009 Sep; 11(9):1570-8. PubMed ID: 19724824 [TBL] [Abstract][Full Text] [Related]
10. Measurement of total antimony and antimony species in mine contaminated soils by ICPMS and HPLC-ICPMS. Telford K; Maher W; Krikowa F; Foster S J Environ Monit; 2008 Jan; 10(1):136-40. PubMed ID: 18175027 [TBL] [Abstract][Full Text] [Related]
11. Distributions and impact factors of antimony in topsoils and moss in Ny-Ålesund, Arctic. Jia N; Sun L; He X; You K; Zhou X; Long N Environ Pollut; 2012 Dec; 171():72-7. PubMed ID: 22885219 [TBL] [Abstract][Full Text] [Related]
12. Distribution and mobility of arsenic in soils of a mining area (Western Spain). García-Sánchez A; Alonso-Rojo P; Santos-Francés F Sci Total Environ; 2010 Sep; 408(19):4194-201. PubMed ID: 20538319 [TBL] [Abstract][Full Text] [Related]
13. Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system. Tighe M; Ashley P; Lockwood P; Wilson S Sci Total Environ; 2005 Jul; 347(1-3):175-86. PubMed ID: 16084977 [TBL] [Abstract][Full Text] [Related]
14. Arsenic, antimony, and bismuth uptake and accumulation by plants in an old antimony mine, China. Wei C; Deng Q; Wu F; Fu Z; Xu L Biol Trace Elem Res; 2011 Dec; 144(1-3):1150-8. PubMed ID: 21547400 [TBL] [Abstract][Full Text] [Related]
15. Antimony in the Soil-Plant System in an Sb Mining/Smelting Area of Southwest China. Ning Z; Xiao T; Xiao E Int J Phytoremediation; 2015; 17(11):1081-9. PubMed ID: 26067424 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of antimony accumulation in plants growing in two mining areas in Iran, Moghanlo, and Patyar. Jamali Hajiani N; Ghaderian SM; Karimi N; Schat H Environ Sci Pollut Res Int; 2015 Nov; 22(21):16542-53. PubMed ID: 26077322 [TBL] [Abstract][Full Text] [Related]
17. Influence of soil properties on trace element availability and plant accumulation in a Mediterranean salt marsh polluted by mining wastes: implications for phytomanagement. Conesa HM; María-Cervantes A; Alvarez-Rogel J; González-Alcaraz MN Sci Total Environ; 2011 Sep; 409(20):4470-9. PubMed ID: 21851964 [TBL] [Abstract][Full Text] [Related]
18. Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: a toxic legacy. Maramba NP; Reyes JP; Francisco-Rivera AT; Panganiban LC; Dioquino C; Dando N; Timbang R; Akagi H; Castillo MT; Quitoriano C; Afuang M; Matsuyama A; Eguchi T; Fuchigami Y J Environ Manage; 2006 Oct; 81(2):135-45. PubMed ID: 16949727 [TBL] [Abstract][Full Text] [Related]
19. Anthropogenic impacts on the biogeochemistry and cycling of antimony. Shotyk W; Krachler M; Chen B Met Ions Biol Syst; 2005; 44():171-203. PubMed ID: 15971668 [TBL] [Abstract][Full Text] [Related]
20. Bioavailability of arsenic and antimony in soils from an abandoned mining area, Glendinning (SW Scotland). Gál J; Hursthouse A; Cuthbert S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1263-74. PubMed ID: 17654146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]