BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

716 related articles for article (PubMed ID: 16730479)

  • 41. The p53 pathway promotes efficient mitochondrial DNA base excision repair in colorectal cancer cells.
    Chen D; Yu Z; Zhu Z; Lopez CD
    Cancer Res; 2006 Apr; 66(7):3485-94. PubMed ID: 16585172
    [TBL] [Abstract][Full Text] [Related]  

  • 42. XRCC1 interactions with base excision repair DNA intermediates.
    Nazarkina ZK; Khodyreva SN; Marsin S; Lavrik OI; Radicella JP
    DNA Repair (Amst); 2007 Feb; 6(2):254-64. PubMed ID: 17118717
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of S. cerevisiae APN1 protein on mammalian DNA base excision repair.
    Bogliolo M; Cappelli E; D'Osualdo A; Rossi O; Barbieri O; Kelley MR; Frosina G
    Anticancer Res; 2002; 22(5):2797-804. PubMed ID: 12529999
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast.
    Alseth I; Eide L; Pirovano M; Rognes T; Seeberg E; Bjørås M
    Mol Cell Biol; 1999 May; 19(5):3779-87. PubMed ID: 10207101
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of S. cerevisiae APN1 protein on mammalian DNA base excision repair.
    Bogliolo M; Cappelli E; D'Osualdo A; Rossi O; Barbieri O; Kelley MR; Frosina G
    Anticancer Res; 2003; 23(5A):3727-34. PubMed ID: 14666670
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand.
    Bucheli M; Sweder K
    Mol Microbiol; 2004 Jun; 52(6):1653-63. PubMed ID: 15186415
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae.
    Malc E; Dzierzbicki P; Kaniak A; Skoneczna A; Ciesla Z
    Mutat Res; 2009 Oct; 669(1-2):95-103. PubMed ID: 19467248
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction.
    Stuart JA; Karahalil B; Hogue BA; Souza-Pinto NC; Bohr VA
    FASEB J; 2004 Mar; 18(3):595-7. PubMed ID: 14734635
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of mismatch repair and Hpr1 on transcription-stimulated mitotic recombination in the yeast Saccharomyces cerevisiae.
    Freedman JA; Jinks-Robertson S
    DNA Repair (Amst); 2004 Nov; 3(11):1437-46. PubMed ID: 15380099
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional characterization of the Caenorhabditis elegans DNA repair enzyme APN-1.
    Yang X; Fan J; Ishchenko AA; Patel D; Saparbaev MK; Ramotar D
    DNA Repair (Amst); 2012 Oct; 11(10):811-22. PubMed ID: 22819077
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Trapping of DNA topoisomerase I on nick-containing DNA in cell free extracts of Saccharomyces cerevisiae.
    Lebedeva N; Auffret Vander Kemp P; Bjornsti MA; Lavrik O; Boiteux S
    DNA Repair (Amst); 2006 Jul; 5(7):799-809. PubMed ID: 16713756
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nucleotide excision repair defect influences lethality and mutagenicity induced by Me-lex, a sequence-selective N3-adenine methylating agent in the absence of base excision repair.
    Monti P; Iannone R; Campomenosi P; Ciribilli Y; Varadarajan S; Shah D; Menichini P; Gold B; Fronza G
    Biochemistry; 2004 May; 43(19):5592-9. PubMed ID: 15134433
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ntg1 and Ntg2 proteins as 5-formyluracil-DNA glycosylases/AP lyases in Saccharomyces cerevisiae.
    Zhang QM; Hashiguchi K; Kino K; Sugiyama H; Yonei S
    Int J Radiat Biol; 2003 May; 79(5):341-9. PubMed ID: 12943242
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alternative repair pathways for UV-induced DNA damage.
    Yasui A; McCready SJ
    Bioessays; 1998 Apr; 20(4):291-7. PubMed ID: 9619100
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [The Rdh54 protein role in regulation of DNA repair in yeast Saccharomyces cerevisiae].
    Latypov VF; Kozhina TN; Kozhin SA; Korolev VG
    Genetika; 2010 Feb; 46(2):194-202. PubMed ID: 20297653
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DNA repair in mammalian mitochondria: Much more than we thought?
    Liu P; Demple B
    Environ Mol Mutagen; 2010 Jun; 51(5):417-26. PubMed ID: 20544882
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 2-Deoxy-D-glucose induced modulation of DNA damage repair, survival, mutagenesis and recombinogenesis in 8-MOP+UVA treated yeast.
    Bala M; Jain V
    Indian J Biochem Biophys; 1997 Dec; 34(6):483-93. PubMed ID: 9594429
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex.
    Dzierzbicki P; Kaniak-Golik A; Malc E; Mieczkowski P; Ciesla Z
    Mutat Res; 2012 Dec; 740(1-2):21-33. PubMed ID: 23276591
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enzymology of the repair of free radicals-induced DNA damage.
    Gros L; Saparbaev MK; Laval J
    Oncogene; 2002 Dec; 21(58):8905-25. PubMed ID: 12483508
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of OGG1 and NTG2 in the repair of oxidative DNA damage and mutagenesis induced by hydrogen peroxide in Saccharomyces cerevisiae: relationships with transition metals iron and copper.
    Melo RG; Leitão AC; Pádula M
    Yeast; 2004 Sep; 21(12):991-1003. PubMed ID: 15449310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.