BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 16730670)

  • 1. The postnatal development of refractory periods and threshold potentials at cerebellar Purkinje neurons.
    Guan S; Ma S; Zhu Y; Wang J
    Brain Res; 2006 Jun; 1097(1):59-64. PubMed ID: 16730670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The intrinsic mechanisms underlying the maturation of programming sequential spikes at cerebellar Purkinje cells.
    Guan S; Ma S; Zhu Y; Ge R; Wang Q; Wang JH
    Biochem Biophys Res Commun; 2006 Jun; 345(1):175-80. PubMed ID: 16677606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons.
    Chen N; Zhu Y; Gao X; Guan S; Wang JH
    Biochem Biophys Res Commun; 2006 Jul; 346(1):281-7. PubMed ID: 16756951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The refractory periods and threshold potentials of sequential spikes measured by whole-cell recording.
    Chen N; Chen S; Wu Y; Wang J
    Biochem Biophys Res Commun; 2006 Feb; 340(1):151-7. PubMed ID: 16343428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Firing dynamics of cerebellar purkinje cells.
    Fernandez FR; Engbers JD; Turner RW
    J Neurophysiol; 2007 Jul; 98(1):278-94. PubMed ID: 17493923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular Ca2+ regulates spike encoding at cortical GABAergic neurons and cerebellar Purkinje cells differently.
    Qi Y; Huang L; Ni H; Zhou X; Zhang J; Zhu Y; Ge M; Guan S; Wang JH
    Biochem Biophys Res Commun; 2009 Mar; 381(1):129-33. PubMed ID: 19351606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane excitability and fear conditioning in cerebellar Purkinje cell.
    Zhu L; Scelfo B; Tempia F; Sacchetti B; Strata P
    Neuroscience; 2006 Jul; 140(3):801-10. PubMed ID: 16580140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Afterhyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels.
    Chen N; Chen X; Yu J; Wang J
    Biochem Biophys Res Commun; 2006 Aug; 346(3):938-45. PubMed ID: 16777065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and morphological development of the rat cerebellar Purkinje cell.
    McKay BE; Turner RW
    J Physiol; 2005 Sep; 567(Pt 3):829-50. PubMed ID: 16002452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ischemia deteriorates the spike encoding of rat cerebellar Purkinje cells by raising intracellular Ca2+.
    Zhao S; Chen N; Yang Z; Huang L; Zhu Y; Guan S; Chen Q; Wang JH
    Biochem Biophys Res Commun; 2008 Feb; 366(2):401-7. PubMed ID: 18073134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The postnatal development of intrinsic properties and spike encoding at cortical GABAergic neurons.
    Wang Q; Liu X; Ge R; Guan S; Zhu Y; Wang JH
    Biochem Biophys Res Commun; 2009 Jan; 378(4):706-10. PubMed ID: 19059212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The leaner P/Q-type calcium channel mutation renders cerebellar Purkinje neurons hyper-excitable and eliminates Ca2+-Na+ spike bursts.
    Ovsepian SV; Friel DD
    Eur J Neurosci; 2008 Jan; 27(1):93-103. PubMed ID: 18093175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous activity in Purkinje cells: multi-electrode recording from organotypic cerebellar slice cultures.
    Kessler M; Kiliman B; Humes C; Arai AC
    Brain Res; 2008 Jul; 1218():54-69. PubMed ID: 18533133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Correlation between the refractory periods and threshold potentials and the spike programming in cortical neurons].
    Chen N; Wu YL; Wang JH
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2008 Feb; 24(1):14-7. PubMed ID: 21141545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium signal-dependent plasticity of neuronal excitability developed postnatally.
    Zhang M; Hung FS; Zhu Y; Xie Z; Wang JH
    J Neurobiol; 2004 Nov; 61(2):277-87. PubMed ID: 15382030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of simple spike firing mode on complex spike firing rate and waveform in cerebellar Purkinje cells in non-anesthetized mice.
    Servais L; Bearzatto B; Hourez R; Dan B; Schiffmann SN; Cheron G
    Neurosci Lett; 2004 Sep; 367(2):171-6. PubMed ID: 15331146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological characterization of cerebellar neurons from adult rats exposed to ethanol during development.
    Bäckman C; West JR; Mahoney JC; Palmer MR
    Alcohol Clin Exp Res; 1998 Aug; 22(5):1137-45. PubMed ID: 9726287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alcohol exposure on postnatal day 5 induces Purkinje cell loss and evidence of Purkinje cell degradation in lobule I of rat cerebellum.
    Lee Y; Rowe J; Eskue K; West JR; Maier SE
    Alcohol; 2008 Jun; 42(4):295-302. PubMed ID: 18400452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cross-correlational analysis of the neuronal connections of the cerebellum in the waking rabbit].
    Dunin-Barkovskiĭ VL; Antsiferova LI; Gusev AG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1997; 47(3):513-22. PubMed ID: 9273791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient generation of mature cerebellar Purkinje cells from mouse embryonic stem cells.
    Tao O; Shimazaki T; Okada Y; Naka H; Kohda K; Yuzaki M; Mizusawa H; Okano H
    J Neurosci Res; 2010 Feb; 88(2):234-47. PubMed ID: 19705453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.