These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 16730670)

  • 21. [Effect of harmaline of the complex spike waveform and depression time in cerebellar Purkinje cell discharge in rat postnatal ontogenesis].
    Karelina TV; Grigor'ian RA
    Zh Evol Biokhim Fiziol; 2010; 46(3):218-24. PubMed ID: 20583582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of purkinje cell output.
    McKay BE; Engbers JD; Mehaffey WH; Gordon GR; Molineux ML; Bains JS; Turner RW
    J Neurophysiol; 2007 Apr; 97(4):2590-604. PubMed ID: 17267759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development.
    Jakovcevski I; Siering J; Hargus G; Karl N; Hoelters L; Djogo N; Yin S; Zecevic N; Schachner M; Irintchev A
    J Comp Neurol; 2009 Apr; 513(5):496-510. PubMed ID: 19226508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlations between purkinje cell single-unit activity and simultaneously recorded field potentials in the immediately underlying granule cell layer.
    Lu H; Hartmann MJ; Bower JM
    J Neurophysiol; 2005 Sep; 94(3):1849-60. PubMed ID: 15928051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The site of action potential initiation in cerebellar Purkinje neurons.
    Clark BA; Monsivais P; Branco T; London M; Häusser M
    Nat Neurosci; 2005 Feb; 8(2):137-9. PubMed ID: 15665877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bistability of cerebellar Purkinje cells modulated by sensory stimulation.
    Loewenstein Y; Mahon S; Chadderton P; Kitamura K; Sompolinsky H; Yarom Y; Häusser M
    Nat Neurosci; 2005 Feb; 8(2):202-11. PubMed ID: 15665875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regular patterns in cerebellar Purkinje cell simple spike trains.
    Shin SL; Hoebeek FE; Schonewille M; De Zeeuw CI; Aertsen A; De Schutter E
    PLoS One; 2007 May; 2(5):e485. PubMed ID: 17534435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stochastic description of complex and simple spike firing in cerebellar Purkinje cells.
    Shin SL; Rotter S; Aertsen A; De Schutter E
    Eur J Neurosci; 2007 Feb; 25(3):785-94. PubMed ID: 17328774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties and expression of Kv3 channels in cerebellar Purkinje cells.
    Sacco T; De Luca A; Tempia F
    Mol Cell Neurosci; 2006 Oct; 33(2):170-9. PubMed ID: 16949837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-treatment with riluzole, a neuroprotective drug, ameliorates the 3-acetylpyridine-induced neurotoxicity in cerebellar Purkinje neurones of rats: behavioural and electrophysiological evidence.
    Janahmadi M; Goudarzi I; Kaffashian MR; Behzadi G; Fathollahi Y; Hajizadeh S
    Neurotoxicology; 2009 May; 30(3):393-402. PubMed ID: 19442824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Maturation of the activity of cerebellar Purkinje cells and the lift reaction].
    Grigor'ian RA; Prigarina EI
    Zh Evol Biokhim Fiziol; 1988; 24(3):344-9. PubMed ID: 3176769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding.
    Chen N; Chen X; Wang JH
    J Cell Sci; 2008 Sep; 121(Pt 17):2961-71. PubMed ID: 18697837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Naturally occurring neuronal death during the postnatal development of Purkinje cells and their precerebellar afferent projections.
    Madalosso SH; Pérez-Villegas EM; Armengol JA
    Brain Res Brain Res Rev; 2005 Sep; 49(2):267-79. PubMed ID: 16111555
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo analysis of Purkinje cell firing properties during postnatal mouse development.
    Arancillo M; White JJ; Lin T; Stay TL; Sillitoe RV
    J Neurophysiol; 2015 Jan; 113(2):578-91. PubMed ID: 25355961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A unified description of cerebellar inter-spike interval distributions and variabilities using summation of Gaussians.
    Chen Y; Nitz DA
    Network; 2011; 22(1-4):74-96. PubMed ID: 22149670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of acutely isolated cells from developing rat cerebellum.
    Hockberger PE; Yousif L; Nam SC
    Neuroimage; 1994 Nov; 1(4):276-87. PubMed ID: 9343577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The direct excitatory effect of IL-1beta on cerebellar Purkinje cell.
    Motoki K; Kishi H; Hori E; Tajiri K; Nishijo H; Muraguchi A
    Biochem Biophys Res Commun; 2009 Feb; 379(3):665-8. PubMed ID: 19100239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient spike-sorting of multi-state neurons using inter-spike intervals information.
    Delescluse M; Pouzat C
    J Neurosci Methods; 2006 Jan; 150(1):16-29. PubMed ID: 16085317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. State-dependence of climbing fiber-driven calcium transients in Purkinje cells.
    Rokni D; Yarom Y
    Neuroscience; 2009 Sep; 162(3):694-701. PubMed ID: 19185601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Incomplete inactivation and rapid recovery of voltage-dependent sodium channels during high-frequency firing in cerebellar Purkinje neurons.
    Carter BC; Bean BP
    J Neurophysiol; 2011 Feb; 105(2):860-71. PubMed ID: 21160003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.