BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16730776)

  • 41. Characterization, morphology and composition of biofilm and precipitates from a sulphate-reducing fixed-bed reactor.
    Remoundaki E; Kousi P; Joulian C; Battaglia-Brunet F; Hatzikioseyian A; Tsezos M
    J Hazard Mater; 2008 May; 153(1-2):514-24. PubMed ID: 17931772
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two-phase partitioning bioreactor for the biodegradation of high concentrations of pentachlorophenol using Sphingobium chlorophenolicum DSM 8671.
    Zilouei H; Guieysse B; Mattiasson B
    Chemosphere; 2008 Aug; 72(11):1788-94. PubMed ID: 18555512
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancement of sulphide production in anaerobic packed bed bench-scale biofilm reactors by sulphate reducing bacteria.
    Alvarez MT; Pozzo T; Mattiasson B
    Biotechnol Lett; 2006 Feb; 28(3):175-81. PubMed ID: 16489495
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitrate stimulation of indigenous nitrate-reducing, sulfide-oxidising bacterial community in wastewater anaerobic biofilms.
    Garcia-de-Lomas J; Corzo A; Carmen Portillo M; Gonzalez JM; Andrades JA; Saiz-Jimenez C; Garcia-Robledo E
    Water Res; 2007 Jul; 41(14):3121-31. PubMed ID: 17524444
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distinctive microbial ecology and biokinetics of autotrophic ammonia and nitrite oxidation in a partial nitrification bioreactor.
    Ahn JH; Yu R; Chandran K
    Biotechnol Bioeng; 2008 Aug; 100(6):1078-87. PubMed ID: 18393313
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sulfide oxidation under chemolithoautotrophic denitrifying conditions.
    Cardoso RB; Sierra-Alvarez R; Rowlette P; Flores ER; Gómez J; Field JA
    Biotechnol Bioeng; 2006 Dec; 95(6):1148-57. PubMed ID: 16807929
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetics of the bio-oxidation of volatile reduced sulphur compounds in a biotrickling filter.
    Cáceres M; Silva J; Morales M; San Martín R; Aroca G
    Bioresour Technol; 2012 Aug; 118():243-8. PubMed ID: 22705530
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detection and removal of dissolved hydrogen sulphide in flow-through systems via the sulphidation of hydrous iron (III) oxides.
    Poulton SW; Krom MD; van Rijn J; Raiswell R; Bows R
    Environ Technol; 2003 Feb; 24(2):217-29. PubMed ID: 12666791
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of feeding time on the performance of a sequencing batch reactor treating a mixture of 4-CP and 2,4-DCP.
    Sahinkaya E; Dilek FB
    J Environ Manage; 2007 Jun; 83(4):427-36. PubMed ID: 16842902
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate.
    Yujian W; Xiaojuan Y; Wei T; Hongyu L
    J Microbiol Methods; 2007 Feb; 68(2):212-7. PubMed ID: 16979768
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic studies on autohydrogenotrophic growth of Ralstonia eutropha with nitrate as terminal electron acceptor.
    Tiemeyer A; Link H; Weuster-Botz D
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):75-81. PubMed ID: 17457540
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal.
    De Gusseme B; De Schryver P; De Cooman M; Verbeken K; Boeckx P; Verstraete W; Boon N
    FEMS Microbiol Ecol; 2009 Jan; 67(1):151-61. PubMed ID: 19120464
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system.
    Manconi I; Carucci A; Lens P
    Biotechnol Bioeng; 2007 Oct; 98(3):551-60. PubMed ID: 17724757
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biological sulfide removal under alkaline and aerobic conditions in a packed recycling reactor.
    González-Sánchez A; Revah S
    Water Sci Technol; 2009; 59(7):1415-21. PubMed ID: 19381008
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor.
    Ziv-El MC; Rittmann BE
    Water Res; 2009 Jan; 43(1):173-81. PubMed ID: 18951606
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR).
    Mohan SV; Rao NC; Sarma PN
    J Hazard Mater; 2007 Jun; 144(1-2):108-17. PubMed ID: 17097228
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigating and modelling the development of septic sewage in filled sewers under static conditions: a lab-scale feasibility study.
    Bachmann RT; Saul AJ; Edyvean RG
    Sci Total Environ; 2007 Dec; 388(1-3):194-205. PubMed ID: 17920658
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source.
    van Houten RT; Pol LW; Lettinga G
    Biotechnol Bioeng; 1994 Aug; 44(5):586-94. PubMed ID: 18618794
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP).
    Sponza DT; Uluköy A
    J Environ Manage; 2008 Jan; 86(1):121-31. PubMed ID: 17254694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simultaneous nitrification and p-cresol oxidation in a nitrifying sequencing batch reactor.
    Texier AC; Gomez J
    Water Res; 2007 Jan; 41(2):315-22. PubMed ID: 17126873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.