These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 16730828)

  • 1. Hydrolase-catalysed synthesis of peroxycarboxylic acids: Biocatalytic promiscuity for practical applications.
    Carboni-Oerlemans C; Domínguez de María P; Tuin B; Bargeman G; van der Meer A; van Gemert R
    J Biotechnol; 2006 Nov; 126(2):140-51. PubMed ID: 16730828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revised molecular basis of the promiscuous carboxylic acid perhydrolase activity in serine hydrolases.
    Yin DT; Kazlauskas RJ
    Chemistry; 2012 Jun; 18(26):8130-9. PubMed ID: 22618813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing catalytic promiscuity for biocatalysis.
    Kazlauskas RJ
    Curr Opin Chem Biol; 2005 Apr; 9(2):195-201. PubMed ID: 15811805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme promiscuity: mechanism and applications.
    Hult K; Berglund P
    Trends Biotechnol; 2007 May; 25(5):231-8. PubMed ID: 17379338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification.
    Metzger JO; Bornscheuer U
    Appl Microbiol Biotechnol; 2006 Jun; 71(1):13-22. PubMed ID: 16604360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of a general base mechanism for ester hydrolysis in C-C hydrolase enzymes of the alpha/beta-hydrolase superfamily: a novel mechanism for the serine catalytic triad.
    Li JJ; Bugg TD
    Org Biomol Chem; 2007 Feb; 5(3):507-13. PubMed ID: 17252134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic promiscuity in the alpha/beta-hydrolase superfamily: hydroxamic acid formation, C--C bond formation, ester and thioester hydrolysis in the C--C hydrolase family.
    Li C; Hassler M; Bugg TD
    Chembiochem; 2008 Jan; 9(1):71-6. PubMed ID: 18058773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways.
    Bornscheuer UT; Kazlauskas RJ
    Angew Chem Int Ed Engl; 2004 Nov; 43(45):6032-40. PubMed ID: 15523680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic halogenation catalyzed via a catalytic triad and by oxidoreductases.
    van Pée KH; Keller S; Wage T; Wynands I; Schnerr H; Zehner S
    Biol Chem; 2000 Jan; 381(1):1-5. PubMed ID: 10722044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular signatures-based prediction of enzyme promiscuity.
    Carbonell P; Faulon JL
    Bioinformatics; 2010 Aug; 26(16):2012-9. PubMed ID: 20551137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme promiscuity: evolutionary and mechanistic aspects.
    Khersonsky O; Roodveldt C; Tawfik DS
    Curr Opin Chem Biol; 2006 Oct; 10(5):498-508. PubMed ID: 16939713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carboxylic acids as substrates in homogeneous catalysis.
    Goossen LJ; Rodríguez N; Goossen K
    Angew Chem Int Ed Engl; 2008; 47(17):3100-20. PubMed ID: 18357604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrilase and its application as a 'green' catalyst.
    Singh R; Sharma R; Tewari N; ; Rawat DS
    Chem Biodivers; 2006 Dec; 3(12):1279-87. PubMed ID: 17193242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolases: catalytically promiscuous enzymes for non-conventional reactions in organic synthesis.
    Busto E; Gotor-Fernández V; Gotor V
    Chem Soc Rev; 2010 Nov; 39(11):4504-23. PubMed ID: 20877864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haloalkane dehalogenases: biotechnological applications.
    Koudelakova T; Bidmanova S; Dvorak P; Pavelka A; Chaloupkova R; Prokop Z; Damborsky J
    Biotechnol J; 2013 Jan; 8(1):32-45. PubMed ID: 22965918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase.
    Ghanem E; Raushel FM
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):459-70. PubMed ID: 15982683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolase-like properties of a cofactor-independent dioxygenase.
    Thierbach S; Büldt-Karentzopoulos K; Dreiling A; Hennecke U; König S; Fetzner S
    Chembiochem; 2012 May; 13(8):1125-7. PubMed ID: 22549932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in biocatalytic synthesis of pharmaceutical intermediates.
    Panke S; Wubbolts M
    Curr Opin Chem Biol; 2005 Apr; 9(2):188-94. PubMed ID: 15811804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily.
    Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J
    J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Enzymatic reactions in biotechnology (48th Bach lecture)].
    Bezborodov AM
    Prikl Biokhim Mikrobiol; 1992; 28(6):803-17. PubMed ID: 1494568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.