BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 16730834)

  • 1. Direct immobilization of tyrosinase enzyme from natural mushrooms (Agaricus bisporus) on D-sorbitol cinnamic ester.
    Marín-Zamora ME; Rojas-Melgarejo F; García-Cánovas F; García-Ruiz PA
    J Biotechnol; 2006 Nov; 126(3):295-303. PubMed ID: 16730834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method for the immobilization of tyrosinase to enhance stability.
    Sharma NM; Kumar S; Sawhney SK
    Biotechnol Appl Biochem; 2003 Oct; 38(Pt 2):137-41. PubMed ID: 12760744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the immobilization supports on the catalytic properties of immobilized mushroom tyrosinase: a comparative study using several substrates.
    Marín-Zamora ME; Rojas-Melgarejo F; García-Cánovas F; García-Ruiz PA
    J Biotechnol; 2007 Sep; 131(4):388-96. PubMed ID: 17868943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereospecificity of mushroom tyrosinase immobilized on a chiral and a nonchiral support.
    Marín-Zamora ME; Rojas-Melgarejo F; García-Canovas F; García-Ruiz PA
    J Agric Food Chem; 2007 May; 55(11):4569-75. PubMed ID: 17488091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of recombinant invertase (re-INVB) from Zymomonas mobilis on D-sorbitol cinnamic ester for production of invert sugar.
    Vallejo-Becerra V; Marín-Zamora ME; Vásquez-Bahena JM; Rojas-Melgarejo F; Hidalgo-Lara ME; García-Ruiz PA
    J Agric Food Chem; 2008 Feb; 56(4):1392-7. PubMed ID: 18237126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient immobilization of mushroom tyrosinase utilizing whole cells from Agaricus bisporus and its application for degradation of bisphenol A.
    Kampmann M; Boll S; Kossuch J; Bielecki J; Uhl S; Kleiner B; Wichmann R
    Water Res; 2014 Jun; 57():295-303. PubMed ID: 24727498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosinase immobilized enzyme reactor: development and evaluation.
    de Oliveira KB; Mischiatti KL; Fontana JD; de Oliveira BH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 945-946():10-6. PubMed ID: 24317418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binary immobilization of tyrosinase by using alginate gel beads and poly(acrylamide-co-acrylic acid) hydrogels.
    Yahşi A; Sahin F; Demirel G; Tümtürk H
    Int J Biol Macromol; 2005 Sep; 36(4):253-8. PubMed ID: 16085306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of o-diphenols by immobilized mushroom tyrosinase.
    Marín-Zamora ME; Rojas-Melgarejo F; García-Cánovas F; García-Ruiz PA
    J Biotechnol; 2009 Jan; 139(2):163-8. PubMed ID: 19047003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agaricus bisporus as a source of tyrosinase for phenol detection for future biosensor development.
    Silva LM; Salgado AM; Coelho MA
    Environ Technol; 2010 May; 31(6):611-6. PubMed ID: 20540422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of tyrosinase on chitosan-clay composite beads.
    Dinçer A; Becerik S; Aydemir T
    Int J Biol Macromol; 2012 Apr; 50(3):815-20. PubMed ID: 22155214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Irreversibly inhibitory kinetics of 3,5-dihydroxyphenyl decanoate on mushroom (Agaricus bisporus) tyrosinase.
    Qiu L; Chen QX; Wang Q; Huang H; Song KK
    Bioorg Med Chem; 2005 Nov; 13(22):6206-11. PubMed ID: 16039860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of tyrosinase in polysiloxane/polypyrrole copolymer matrices.
    Arslan A; Kiralp S; Toppare L; Yagci Y
    Int J Biol Macromol; 2005 Apr; 35(3-4):163-7. PubMed ID: 15811471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do copper ions activate tyrosinase enzyme? A biosensor model for the solution.
    Akyilmaz E; Yorganci E; Asav E
    Bioelectrochemistry; 2010 Jun; 78(2):155-60. PubMed ID: 19840905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mushroom tyrosinase in polyelectrolyte multilayers as an optical biosensor for o-diphenols.
    Fiorentino D; Gallone A; Fiocco D; Palazzo G; Mallardi A
    Biosens Bioelectron; 2010 May; 25(9):2033-7. PubMed ID: 20176470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Innovator Support Material for Tyrosinase Immobilization: Antimony-Doped Tin Oxide Thin Films (ATO-TF).
    Türkhan A; Kaya ED; Koçyiğit A
    Appl Biochem Biotechnol; 2020 Oct; 192(2):432-442. PubMed ID: 32394320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of covalent immobilization of pectinase on sodium alginate support.
    Li T; Wang N; Li S; Zhao Q; Guo M; Zhang C
    Biotechnol Lett; 2007 Sep; 29(9):1413-6. PubMed ID: 17541760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of fungal beta-glucosidase on silica gel and kaolin carriers.
    Karagulyan HK; Gasparyan VK; Decker SR
    Appl Biochem Biotechnol; 2008 Mar; 146(1-3):39-47. PubMed ID: 18421585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of a silk protein-based matrix for the enzymatic conversion of tyrosine to L-DOPA.
    Acharya C; Kumar V; Sen R; Kundu SC
    Biotechnol J; 2008 Feb; 3(2):226-33. PubMed ID: 18034433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone.
    Ismaya WT; Rozeboom HJ; Weijn A; Mes JJ; Fusetti F; Wichers HJ; Dijkstra BW
    Biochemistry; 2011 Jun; 50(24):5477-86. PubMed ID: 21598903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.