BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 16730896)

  • 1. An investigation of the consequences of primary dust explosions in interconnected vessels.
    Kosinski P; Hoffmann AC
    J Hazard Mater; 2006 Sep; 137(2):752-61. PubMed ID: 16730896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation of explosion suppression by inert particles in straight ducts.
    Kosinski P
    J Hazard Mater; 2008 Jun; 154(1-3):981-91. PubMed ID: 18068297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CFD analysis of gas explosions vented through relief pipes.
    Ferrara G; Di Benedetto A; Salzano E; Russo G
    J Hazard Mater; 2006 Sep; 137(2):654-65. PubMed ID: 16675106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of debris with a solid obstacle: numerical analysis.
    Kosinska A
    J Hazard Mater; 2010 May; 177(1-3):602-12. PubMed ID: 20060218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overall characterization of cork dust explosion.
    Pilão R; Ramalho E; Pinho C
    J Hazard Mater; 2006 May; 133(1-3):183-95. PubMed ID: 16297545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explosion pressures of hydrocarbon-air mixtures in closed vessels.
    Razus D; Movileanu C; Brinzea V; Oancea D
    J Hazard Mater; 2006 Jul; 135(1-3):58-65. PubMed ID: 16386834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ignition temperature of magnesium powder clouds: a theoretical model.
    Chunmiao Y; Chang L; Gang L; Peihong Z
    J Hazard Mater; 2012 Nov; 239-240():294-301. PubMed ID: 23022411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of natural convection on thermal explosion in a closed vessel.
    Liu TY; Campbell AN; Cardoso SS; Hayhurst AN
    Phys Chem Chem Phys; 2008 Sep; 10(36):5521-30. PubMed ID: 18956086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model to assess dust explosion occurrence probability.
    Hassan J; Khan F; Amyotte P; Ferdous R
    J Hazard Mater; 2014 Mar; 268():140-9. PubMed ID: 24486616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFD calculations of gas leak dispersion and subsequent gas explosions: validation against ignited impinging hydrogen jet experiments.
    Middha P; Hansen OR; Grune J; Kotchourko A
    J Hazard Mater; 2010 Jul; 179(1-3):84-94. PubMed ID: 20346585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray.
    Pak SI; Chang KS
    J Hazard Mater; 2006 Dec; 138(3):560-73. PubMed ID: 16860933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between self-ignition of a dust layer on a hot surface and in baskets in an oven.
    Janes A; Carson D; Accorsi A; Chaineaux J; Tribouilloy B; Morainvillers D
    J Hazard Mater; 2008 Nov; 159(2-3):528-35. PubMed ID: 18384948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the decomposition reaction and dust explosion characteristics of crystalline benzoyl peroxides.
    Lu KT; Chen TC; Hu KH
    J Hazard Mater; 2009 Jan; 161(1):246-56. PubMed ID: 18440131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dust explosions-cases, causes, consequences, and control.
    Abbasi T; Abbasi SA
    J Hazard Mater; 2007 Feb; 140(1-2):7-44. PubMed ID: 17194531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of minimum ignition energies of dust clouds in the <1mJ region.
    Randeberg E; Eckhoff RK
    J Hazard Mater; 2007 Feb; 140(1-2):237-44. PubMed ID: 16950566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation.
    Myers TJ
    J Hazard Mater; 2008 Nov; 159(1):72-80. PubMed ID: 18423857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ignition and explosion risks of nanopowders.
    Bouillard J; Vignes A; Dufaud O; Perrin L; Thomas D
    J Hazard Mater; 2010 Sep; 181(1-3):873-80. PubMed ID: 20591567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple explosions induced by the deposited dust layer in enclosed pipeline.
    Song Y; Zhang Q
    J Hazard Mater; 2019 Jun; 371():423-432. PubMed ID: 30875569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure and Flame Propagation Characteristics of Suspended Coal Dust Explosions Induced by Gas Explosions.
    Xun Jing G; Sun Y; Shuai Guo S
    ACS Omega; 2024 Apr; 9(14):16648-16655. PubMed ID: 38617661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Large Eddy Simulation for understanding vented gas explosions in the presence of obstacles.
    Di Sarli V; Di Benedetto A; Russo G
    J Hazard Mater; 2009 Sep; 169(1-3):435-42. PubMed ID: 19409700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.