BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 16731516)

  • 1. Changes in visual receptive fields with microstimulation of frontal cortex.
    Armstrong KM; Fitzgerald JK; Moore T
    Neuron; 2006 Jun; 50(5):791-8. PubMed ID: 16731516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective gating of visual signals by microstimulation of frontal cortex.
    Moore T; Armstrong KM
    Nature; 2003 Jan; 421(6921):370-3. PubMed ID: 12540901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstimulation of the frontal eye field and its effects on covert spatial attention.
    Moore T; Fallah M
    J Neurophysiol; 2004 Jan; 91(1):152-62. PubMed ID: 13679398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2004 Mar; 91(3):1381-402. PubMed ID: 14573558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2000 Apr; 83(4):1979-2001. PubMed ID: 10758109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial working memory alters the efficacy of input to visual cortex.
    Merrikhi Y; Clark K; Albarran E; Parsa M; Zirnsak M; Moore T; Noudoost B
    Nat Commun; 2017 Apr; 8():15041. PubMed ID: 28447609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation.
    Murthy A; Ray S; Shorter SM; Schall JD; Thompson KG
    J Neurophysiol; 2009 May; 101(5):2485-506. PubMed ID: 19261711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of FEF microstimulation on the responses of neurons in the lateral intraparietal area.
    Premereur E; Vanduffel W; Janssen P
    J Cogn Neurosci; 2014 Aug; 26(8):1672-84. PubMed ID: 24564460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual sensitivity of frontal eye field neurons during the preparation of saccadic eye movements.
    Krock RM; Moore T
    J Neurophysiol; 2016 Dec; 116(6):2882-2891. PubMed ID: 27683894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field.
    Hamker FH; Zirnsak M
    Neural Netw; 2006 Nov; 19(9):1371-82. PubMed ID: 17014990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supplementary eye field: representation of saccades and relationship between neural response fields and elicited eye movements.
    Russo GS; Bruce CJ
    J Neurophysiol; 2000 Nov; 84(5):2605-21. PubMed ID: 11068002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature-based attention in the frontal eye field and area V4 during visual search.
    Zhou H; Desimone R
    Neuron; 2011 Jun; 70(6):1205-17. PubMed ID: 21689605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the contrast response function by electrical microstimulation of the macaque frontal eye field.
    Ekstrom LB; Roelfsema PR; Arsenault JT; Kolster H; Vanduffel W
    J Neurosci; 2009 Aug; 29(34):10683-94. PubMed ID: 19710320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radial motion bias in macaque frontal eye field.
    Xiao Q; Barborica A; Ferrera VP
    Vis Neurosci; 2006; 23(1):49-60. PubMed ID: 16597350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A distinct contribution of the frontal eye field to the visual representation of saccadic targets.
    Noudoost B; Clark KL; Moore T
    J Neurosci; 2014 Mar; 34(10):3687-98. PubMed ID: 24599467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presaccadic discrimination of receptive field stimuli by area V4 neurons.
    Moore T; Chang MH
    Vision Res; 2009 Jun; 49(10):1227-32. PubMed ID: 18501949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontal eye field microstimulation induces task-dependent gamma oscillations in the lateral intraparietal area.
    Premereur E; Vanduffel W; Roelfsema PR; Janssen P
    J Neurophysiol; 2012 Sep; 108(5):1392-402. PubMed ID: 22673327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical microstimulation thresholds for behavioral detection and saccades in monkey frontal eye fields.
    Murphey DK; Maunsell JH
    Proc Natl Acad Sci U S A; 2008 May; 105(20):7315-20. PubMed ID: 18477698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.