These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16731985)

  • 1. Structure-based function inference using protein family-specific fingerprints.
    Bandyopadhyay D; Huan J; Liu J; Prins J; Snoeyink J; Wang W; Tropsha A
    Protein Sci; 2006 Jun; 15(6):1537-43. PubMed ID: 16731985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional neighbors: inferring relationships between nonhomologous protein families using family-specific packing motifs.
    Bandyopadhyay D; Huan J; Liu J; Prins J; Snoeyink J; Wang W; Tropsha A
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1137-43. PubMed ID: 20570776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of homology in protein structure classification.
    Dietmann S; Holm L
    Nat Struct Biol; 2001 Nov; 8(11):953-7. PubMed ID: 11685241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of family-specific residue packing motifs and their use for structure-based protein function prediction: I. Method development.
    Bandyopadhyay D; Huan J; Prins J; Snoeyink J; Wang W; Tropsha A
    J Comput Aided Mol Des; 2009 Nov; 23(11):773-84. PubMed ID: 19543979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PASS2: an automated database of protein alignments organised as structural superfamilies.
    Bhaduri A; Pugalenthi G; Sowdhamini R
    BMC Bioinformatics; 2004 Apr; 5():35. PubMed ID: 15059245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FSSA: a novel method for identifying functional signatures from structural alignments.
    Wang K; Samudrala R
    Bioinformatics; 2005 Jul; 21(13):2969-77. PubMed ID: 15860561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional restraints on the patterns of amino acid substitutions: application to sequence-structure homology recognition.
    Chelliah V; Blundell T; Mizuguchi K
    Proteins; 2005 Dec; 61(4):722-31. PubMed ID: 16193489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of sequence and structure-based datasets for nonredundant structural data mining.
    Chu CK; Feng LL; Wouters MA
    Proteins; 2005 Sep; 60(4):577-83. PubMed ID: 16001417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of the Escherichia coli genome using the sequence-to-structure-to-function paradigm: identification of proteins exhibiting the glutaredoxin/thioredoxin disulfide oxidoreductase activity.
    Fetrow JS; Godzik A; Skolnick J
    J Mol Biol; 1998 Oct; 282(4):703-11. PubMed ID: 9743619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicted role for the archease protein family based on structural and sequence analysis of TM1083 and MTH1598, two proteins structurally characterized through structural genomics efforts.
    Canaves JM
    Proteins; 2004 Jul; 56(1):19-27. PubMed ID: 15162483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated discovery of structural signatures of protein fold and function.
    Turcotte M; Muggleton SH; Sternberg MJ
    J Mol Biol; 2001 Feb; 306(3):591-605. PubMed ID: 11178916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis and prediction of functional sub-types from protein sequence alignments.
    Hannenhalli SS; Russell RB
    J Mol Biol; 2000 Oct; 303(1):61-76. PubMed ID: 11021970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distance-based identification of structure motifs in proteins using constrained frequent subgraph mining.
    Huan J; Bandyopadhyay D; Prins J; Snoeyink J; Tropsha A; Wang W
    Comput Syst Bioinformatics Conf; 2006; ():227-38. PubMed ID: 17369641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence, structural, functional, and phylogenetic analyses of three glycosidase families.
    Mian IS
    Blood Cells Mol Dis; 1998 Jun; 24(2):83-100. PubMed ID: 9779294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of family-specific residue packing motifs and their use for structure-based protein function prediction: II. Case studies and applications.
    Bandyopadhyay D; Huan J; Prins J; Snoeyink J; Wang W; Tropsha A
    J Comput Aided Mol Des; 2009 Nov; 23(11):785-97. PubMed ID: 19548090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking.
    Aloy P; Querol E; Aviles FX; Sternberg MJ
    J Mol Biol; 2001 Aug; 311(2):395-408. PubMed ID: 11478868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores.
    Wilson CA; Kreychman J; Gerstein M
    J Mol Biol; 2000 Mar; 297(1):233-49. PubMed ID: 10704319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional annotation by sequence-weighted structure alignments: statistical analysis and case studies from the Protein 3000 structural genomics project in Japan.
    Standley DM; Toh H; Nakamura H
    Proteins; 2008 Sep; 72(4):1333-51. PubMed ID: 18384072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of YihS in complex with D-mannose: structural annotation of Escherichia coli and Salmonella enterica yihS-encoded proteins to an aldose-ketose isomerase.
    Itoh T; Mikami B; Hashimoto W; Murata K
    J Mol Biol; 2008 Apr; 377(5):1443-59. PubMed ID: 18328504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of deleterious functional effects of amino acid mutations using a library of structure-based function descriptors.
    Herrgard S; Cammer SA; Hoffman BT; Knutson S; Gallina M; Speir JA; Fetrow JS; Baxter SM
    Proteins; 2003 Dec; 53(4):806-16. PubMed ID: 14635123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.