These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 16732056)

  • 1. Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels.
    Mannion JT; Reccius CH; Cross JD; Craighead HG
    Biophys J; 2006 Jun; 90(12):4538-45. PubMed ID: 16732056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compression and free expansion of single DNA molecules in nanochannels.
    Reccius CH; Mannion JT; Cross JD; Craighead HG
    Phys Rev Lett; 2005 Dec; 95(26):268101. PubMed ID: 16486410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels.
    Reccius CH; Stavis SM; Mannion JT; Walker LP; Craighead HG
    Biophys J; 2008 Jul; 95(1):273-86. PubMed ID: 18339746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection.
    Deufel C; Forth S; Simmons CR; Dejgosha S; Wang MD
    Nat Methods; 2007 Mar; 4(3):223-5. PubMed ID: 17322891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropic trap, surface-mediated combing, and assembly of DNA molecules within submicrometer interfacial confinement.
    Hsieh SF; Wei HH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021901. PubMed ID: 19391772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanofluidic channels fabrication and manipulation of DNA molecules.
    Wang K; Yue S; Wang L; Jin A; Gu C; Wang P; Wang H; Xu X; Wang Y; Niu H
    IEE Proc Nanobiotechnol; 2006 Feb; 153(1):11-5. PubMed ID: 16480321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure.
    Turner SW; Cabodi M; Craighead HG
    Phys Rev Lett; 2002 Mar; 88(12):128103. PubMed ID: 11909505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-field-magnetic-tweezer manipulation of single DNA molecules.
    Yan J; Skoko D; Marko JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011905. PubMed ID: 15324086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transverse fluctuation analysis of single extended DNA molecules.
    Gueroui Z; Freyssingeas E; Place C; Berge B
    Eur Phys J E Soft Matter; 2003 May; 11(1):105-8. PubMed ID: 15015093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microviscoelasticity of the apical cell surface of human umbilical vein endothelial cells (HUVEC) within confluent monolayers.
    Feneberg W; Aepfelbacher M; Sackmann E
    Biophys J; 2004 Aug; 87(2):1338-50. PubMed ID: 15298936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopores: The art of sucking spaghetti.
    Austin R
    Nat Mater; 2003 Sep; 2(9):567-8. PubMed ID: 12951593
    [No Abstract]   [Full Text] [Related]  

  • 12. DNA molecules and configurations in a solid-state nanopore microscope.
    Li J; Gershow M; Stein D; Brandin E; Golovchenko JA
    Nat Mater; 2003 Sep; 2(9):611-5. PubMed ID: 12942073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single molecule force spectroscopy on ligand-DNA complexes: from molecular binding mechanisms to biosensor applications.
    Ros R; Eckel R; Bartels F; Sischka A; Baumgarth B; Wilking SD; PĆ¼hler A; Sewald N; Becker A; Anselmetti D
    J Biotechnol; 2004 Aug; 112(1-2):5-12. PubMed ID: 15288936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrokinetic transport in nanochannels. 2. Experiments.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6782-9. PubMed ID: 16255574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single DNA molecule detection using nanopipettes and nanoparticles.
    Karhanek M; Kemp JT; Pourmand N; Davis RW; Webb CD
    Nano Lett; 2005 Feb; 5(2):403-7. PubMed ID: 15794633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluidic switching in nanochannels for the control of Inchworm: a synthetic biomolecular motor with a power stroke.
    Niman CS; Zuckermann MJ; Balaz M; Tegenfeldt JO; Curmi PM; Forde NR; Linke H
    Nanoscale; 2014 Dec; 6(24):15008-19. PubMed ID: 25367216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic concentration of DNA polymers in nanofluidic channels.
    Stein D; Deurvorst Z; van der Heyden FH; Koopmans WJ; Gabel A; Dekker C
    Nano Lett; 2010 Mar; 10(3):765-72. PubMed ID: 20151696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation dynamics of a single DNA molecule.
    Goshen E; Zhao WZ; Carmon G; Rosen S; Granek R; Feingold M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061920. PubMed ID: 16089778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling individual molecules by mechanical forces: theory meets experiment.
    Makarov DE
    Biophys J; 2007 Jun; 92(12):4135-6. PubMed ID: 17384065
    [No Abstract]   [Full Text] [Related]  

  • 20. Dynamic measurements of transverse optical trapping force in biological applications.
    Ermilov S; Anvari B
    Ann Biomed Eng; 2004 Jul; 32(7):1016-26. PubMed ID: 15298439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.