BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 16732274)

  • 21. Distribution of eye- and arm-movement-related neuronal activity in the SEF and in the SMA and Pre-SMA of monkeys.
    Fujii N; Mushiake H; Tanji J
    J Neurophysiol; 2002 Apr; 87(4):2158-66. PubMed ID: 11929933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of microstimulation of the dorsomedial frontal cortex on saccade latency.
    Yang SN; Heinen SJ; Missal M
    J Neurophysiol; 2008 Apr; 99(4):1857-70. PubMed ID: 18216220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Context-dependent stimulation effects on saccade initiation in the presupplementary motor area of the monkey.
    Isoda M
    J Neurophysiol; 2005 May; 93(5):3016-22. PubMed ID: 15703225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracerebral dynamics of saccade generation in the human frontal eye field and supplementary eye field.
    Lachaux JP; Hoffmann D; Minotti L; Berthoz A; Kahane P
    Neuroimage; 2006 May; 30(4):1302-12. PubMed ID: 16412667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Difficulty of visual search modulates neuronal interactions and response variability in the frontal eye field.
    Cohen JY; Pouget P; Woodman GF; Subraveti CR; Schall JD; Rossi AF
    J Neurophysiol; 2007 Nov; 98(5):2580-7. PubMed ID: 17855586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance monitoring local field potentials in the medial frontal cortex of primates: supplementary eye field.
    Emeric EE; Leslie M; Pouget P; Schall JD
    J Neurophysiol; 2010 Sep; 104(3):1523-37. PubMed ID: 20660423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microstimulation of V1 delays the execution of visually guided saccades.
    Tehovnik EJ; Slocum WM; Schiller PH
    Eur J Neurosci; 2004 Jul; 20(1):264-72. PubMed ID: 15245498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. What delay fields tell us about striate cortex.
    Tehovnik EJ; Slocum WM
    J Neurophysiol; 2007 Aug; 98(2):559-76. PubMed ID: 17567774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding.
    Ray S; Pouget P; Schall JD
    J Neurophysiol; 2009 Dec; 102(6):3091-100. PubMed ID: 19776364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Delay-period activity in visual, visuomovement, and movement neurons in the frontal eye field.
    Lawrence BM; White RL; Snyder LH
    J Neurophysiol; 2005 Aug; 94(2):1498-508. PubMed ID: 15843482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of depolarization and hyperpolarization in the frontal cortex and saccade goal.
    Seidemann E; Arieli A; Grinvald A; Slovin H
    Science; 2002 Feb; 295(5556):862-5. PubMed ID: 11823644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Delaying visually guided saccades by microstimulation of macaque V1: spatial properties of delay fields.
    Tehovnik EJ; Slocum WM; Schiller PH
    Eur J Neurosci; 2005 Nov; 22(10):2635-43. PubMed ID: 16307605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity.
    Hanes DP; Patterson WF; Schall JD
    J Neurophysiol; 1998 Feb; 79(2):817-34. PubMed ID: 9463444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pre-excitatory pause in frontal eye field responses.
    Sato T; Schall JD
    Exp Brain Res; 2001 Jul; 139(1):53-8. PubMed ID: 11482843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuronal activity dependent on anticipated and elapsed delay in macaque prefrontal cortex, frontal and supplementary eye fields, and premotor cortex.
    Roesch MR; Olson CR
    J Neurophysiol; 2005 Aug; 94(2):1469-97. PubMed ID: 15817652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of stimulus-response compatibility on neural selection in frontal eye field.
    Sato TR; Schall JD
    Neuron; 2003 May; 38(4):637-48. PubMed ID: 12765614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time course of blood oxygenation level-dependent signal response after theta burst transcranial magnetic stimulation of the frontal eye field.
    Hubl D; Nyffeler T; Wurtz P; Chaves S; Pflugshaupt T; Lüthi M; von Wartburg R; Wiest R; Dierks T; Strik WK; Hess CW; Müri RM
    Neuroscience; 2008 Feb; 151(3):921-8. PubMed ID: 18160225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2004 Mar; 91(3):1403-23. PubMed ID: 14573557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of antisaccades by transcranial magnetic stimulation of the human frontal eye field.
    Olk B; Chang E; Kingstone A; Ro T
    Cereb Cortex; 2006 Jan; 16(1):76-82. PubMed ID: 15843631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.