These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 16732418)

  • 1. Size-based microfluidic enrichment of neonatal rat cardiac cell populations.
    Murthy SK; Sethu P; Vunjak-Novakovic G; Toner M; Radisic M
    Biomed Microdevices; 2006 Sep; 8(3):231-7. PubMed ID: 16732418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes.
    Au HT; Cheng I; Chowdhury MF; Radisic M
    Biomaterials; 2007 Oct; 28(29):4277-93. PubMed ID: 17604100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling.
    Qu BY; Wu ZY; Fang F; Bai ZM; Yang DZ; Xu SK
    Anal Bioanal Chem; 2008 Dec; 392(7-8):1317-24. PubMed ID: 18807015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of cardiac Kv1.5 K+ channel expression by cardiac fibroblasts and mechanical load in cultured newborn rat ventricular myocytes.
    Guo W; Kamiya K; Kada K; Kodama I; Toyama J
    J Mol Cell Cardiol; 1998 Jan; 30(1):157-166. PubMed ID: 9500875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Kv4.2 and Kv1.4 K+ channel expression by myocardial hypertrophic factors in cultured newborn rat ventricular cells.
    Guo W; Kamiya K; Hojo M; Kodama I; Toyama J
    J Mol Cell Cardiol; 1998 Jul; 30(7):1449-55. PubMed ID: 9710812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of neonatal rat ventricular myocytes and non-myocytes by centrifugal elutriation.
    Boerma M; van der Wees CG; Wondergem J; van der Laarse A; Persoon M; van Zeeland AA; Mullenders LH
    Pflugers Arch; 2002 Jun; 444(3):452-6. PubMed ID: 12111256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
    Wang X; Liedert C; Liedert R; Papautsky I
    Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic gating valve for microfluidic fluorescence-activated cell sorting.
    Chen P; Feng X; Hu R; Sun J; Du W; Liu BF
    Anal Chim Acta; 2010 Mar; 663(1):1-6. PubMed ID: 20172088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell cycle-related changes in the voltage-gated Ca2+ currents in cultured newborn rat ventricular myocytes.
    Guo W; Kamiya K; Kodama I; Toyama J
    J Mol Cell Cardiol; 1998 Jun; 30(6):1095-103. PubMed ID: 9689584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neonatal rat cardiomyocytes possess a large population of stable microtubules that is enriched in post-translationally modified subunits.
    Webster DR
    J Mol Cell Cardiol; 1997 Oct; 29(10):2813-24. PubMed ID: 9344775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic stretch and endothelin-1 mediated activation of chloride channels in cultured neonatal rat ventricular myocytes.
    de Jonge HW; Dekkers DH; Tilly BC; Lamers JM
    Clin Sci (Lond); 2002 Aug; 103 Suppl 48():148S-151S. PubMed ID: 12193074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of DNA fragmentation in a single apoptotic cardiomyocyte by electrophoresis on a microfluidic device.
    Klepárník K; Horký M
    Electrophoresis; 2003 Nov; 24(21):3778-83. PubMed ID: 14613205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal temperature range for low-temperature preservation of dissociated neonatal rat cardiomyocytes.
    Uchida T; Nagayama M; Taira T; Shimizu K; Sakai M; Gohara K
    Cryobiology; 2011 Dec; 63(3):279-84. PubMed ID: 22005593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free enrichment of functional cardiomyocytes using microfluidic deterministic lateral flow displacement.
    Zhang B; Green JV; Murthy SK; Radisic M
    PLoS One; 2012; 7(5):e37619. PubMed ID: 22666372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The expression, phosphorylation, and localization of connexin 43 and gap-junctional intercellular communication during the establishment of a synchronized contraction of cultured neonatal rat cardiac myocytes.
    Oyamada M; Kimura H; Oyamada Y; Miyamoto A; Ohshika H; Mori M
    Exp Cell Res; 1994 Jun; 212(2):351-8. PubMed ID: 8187829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arachidonic acid supplementation enhances hydrogen peroxide induced oxidative injury of neonatal rat cardiac myocytes.
    Toraason M; Wey H; Woolery M; Plews P; Hoffmann P
    Cardiovasc Res; 1995 May; 29(5):624-8. PubMed ID: 7606749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of adult rat ventricular cells in long-term culture.
    Ikeda U; Briggs GM; Allen PD; Sen L; Medford RM; Smith TW
    Cardioscience; 1990 Sep; 1(3):225-33. PubMed ID: 2102811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation of adult rat cardiac myocytes in primary culture.
    Banyasz T; Lozinskiy I; Payne CE; Edelmann S; Norton B; Chen B; Chen-Izu Y; Izu LT; Balke CW
    Exp Physiol; 2008 Mar; 93(3):370-82. PubMed ID: 18156167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-density seeding of myocyte cells for cardiac tissue engineering.
    Radisic M; Euloth M; Yang L; Langer R; Freed LE; Vunjak-Novakovic G
    Biotechnol Bioeng; 2003 May; 82(4):403-14. PubMed ID: 12632397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.