These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16732668)

  • 1. Microstencils for the patterning of nontraditional materials.
    Pal R; Sung KE; Burns MA
    Langmuir; 2006 Jun; 22(12):5392-7. PubMed ID: 16732668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils.
    Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A
    Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive and negative TiO2 micropatterns on organic polymer substrates.
    Yang P; Yang M; Zou S; Xie J; Yang W
    J Am Chem Soc; 2007 Feb; 129(6):1541-52. PubMed ID: 17243675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of atomic layer-deposited alumina thin films.
    Finch DS; Oreskovic T; Ramadurai K; Herrmann CF; George SM; Mahajan RL
    J Biomed Mater Res A; 2008 Oct; 87(1):100-6. PubMed ID: 18085647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lab-on-a-print: from a single polymer film to three-dimensional integrated microfluidics.
    Wang W; Zhao S; Pan T
    Lab Chip; 2009 Apr; 9(8):1133-7. PubMed ID: 19350096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique.
    Metz S; Jiguet S; Bertsch A; Renaud P
    Lab Chip; 2004 Apr; 4(2):114-20. PubMed ID: 15052350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation of an integrated neural interface device with Parylene C.
    Hsu JM; Rieth L; Normann RA; Tathireddy P; Solzbacher F
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):23-9. PubMed ID: 19224715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of buried channel waveguides on silicon substrates using spin-on glass.
    Holmes AS; Syms RR; Li M; Green M
    Appl Opt; 1993 Sep; 32(25):4916-21. PubMed ID: 20830168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid phase deposition of polymers on arbitrary shaped surfaces and their suitability for e-beam patterning.
    Päivänranta B; Pudas M; Pitkänen O; Leinonen K; Kuittinen M; Baroni PY; Scharf T; Herzig HP
    Nanotechnology; 2009 Jun; 20(22):225305. PubMed ID: 19433874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Area selective molecular layer deposition of polyurea films.
    Prasittichai C; Zhou H; Bent SF
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13391-6. PubMed ID: 24229350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ceramic thin films on plastics: a versatile transfer process for large area as well as patterned coating.
    Kozuka H; Fukui T; Takahashi M; Uchiyama H; Tsuboi S
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6415-20. PubMed ID: 23211312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guided growth of neurons and glia using microfabricated patterns of parylene-C on a SiO2 background.
    Delivopoulos E; Murray AF; MacLeod NK; Curtis JC
    Biomaterials; 2009 Apr; 30(11):2048-58. PubMed ID: 19138795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip parylene-C microstencil for simple-to-use patterning of proteins and cells on polydimethylsiloxane.
    Lee D; Yang S
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2658-68. PubMed ID: 23477911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterning inorganic (CaCO3) thin films via a polymer-induced liquid-precursor process.
    Kim YY; Douglas EP; Gower LB
    Langmuir; 2007 Apr; 23(9):4862-70. PubMed ID: 17388609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-density protein patterning through selective plasma-induced fluorocarbon deposition on Si substrates.
    Bayiati P; Malainou A; Matrozos E; Tserepi A; Petrou PS; Kakabakos SE; Gogolides E
    Biosens Bioelectron; 2009 Jun; 24(10):2979-84. PubMed ID: 19362463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell and protein compatibility of parylene-C surfaces.
    Chang TY; Yadav VG; De Leo S; Mohedas A; Rajalingam B; Chen CL; Selvarasah S; Dokmeci MR; Khademhosseini A
    Langmuir; 2007 Nov; 23(23):11718-25. PubMed ID: 17915896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive protein adsorption on micro patterned polymeric biomaterials, and viscoelastic properties of tailor made extracellular matrices.
    Welle A; Chiumiento A; Barbucci R
    Biomol Eng; 2007 Feb; 24(1):87-91. PubMed ID: 16861035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.