These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 16733584)
1. Sugar-thioacetamide backbone in oligodeoxyribonucleosides for specific recognition of nucleic acids. Gogoi K; Gunjal AD; Kumar VA Chem Commun (Camb); 2006 Jun; (22):2373-5. PubMed ID: 16733584 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and RNA binding selectivity of oligonucleotides modified with five-atom thioacetamido nucleic acid backbone structures. Gogoi K; Gunjal AD; Phalgune UD; Kumar VA Org Lett; 2007 Jul; 9(14):2697-700. PubMed ID: 17552532 [TBL] [Abstract][Full Text] [Related]
3. Probing binding preferences of DNA and RNA: backbone chirality of thioacetamido-linked nucleic acids and iso-thioacetamido-linked nucleic acids to differentiate DNA versus RNA selective binding. Gokhale SS; Gogoi K; Kumar VA J Org Chem; 2010 Nov; 75(21):7431-4. PubMed ID: 20939539 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulations of nucleic acids: A). Molecular dynamics simulations of the oligonucleotide with the modified phosphate/phosphonate internucleotide linkage. Barvík I; Stĕpánek J; Bok J Gen Physiol Biophys; 1998 Jun; 17 Suppl 1():21-3. PubMed ID: 9789747 [No Abstract] [Full Text] [Related]
5. Peptide nucleic acids and their potential applications in biotechnology. Buchardt O; Egholm M; Berg RH; Nielsen PE Trends Biotechnol; 1993 Sep; 11(9):384-6. PubMed ID: 7691090 [TBL] [Abstract][Full Text] [Related]
6. Double sugar and phosphate backbone-constrained nucleotides: synthesis, structure, stability, and their incorporation into oligodeoxynucleotides. Zhou C; Plashkevych O; Chattopadhyaya J J Org Chem; 2009 May; 74(9):3248-65. PubMed ID: 19348480 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and properties of nucleic acid analogues consisting of a benzene-phosphate backbone. Ueno Y; Kato T; Sato K; Ito Y; Yoshida M; Inoue T; Shibata A; Ebihara M; Kitade Y J Org Chem; 2005 Sep; 70(20):7925-35. PubMed ID: 16277312 [TBL] [Abstract][Full Text] [Related]
9. Geometrical and electronic structure variability of the sugar-phosphate backbone in nucleic acids. Svozil D; Sponer JE; Marchan I; Pérez A; Cheatham TE; Forti F; Luque FJ; Orozco M; Sponer J J Phys Chem B; 2008 Jul; 112(27):8188-97. PubMed ID: 18558755 [TBL] [Abstract][Full Text] [Related]
10. RNA-Binding affinities and crystal structure of oligonucleotides containing five-atom amide-based backbone structures. Pallan PS; von Matt P; Wilds CJ; Altmann KH; Egli M Biochemistry; 2006 Jul; 45(26):8048-57. PubMed ID: 16800629 [TBL] [Abstract][Full Text] [Related]
11. Chiral-selective aminoacylation of an RNA minihelix. Tamura K; Schimmel P Science; 2004 Aug; 305(5688):1253. PubMed ID: 15333830 [TBL] [Abstract][Full Text] [Related]
12. Nucleic acids with a six-membered 'carbohydrate' mimic in the backbone. Herdewijn P Chem Biodivers; 2010 Jan; 7(1):1-59. PubMed ID: 20087996 [TBL] [Abstract][Full Text] [Related]
13. The DNA and RNA sugar-phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies. Šponer J; Mládek A; Šponer JE; Svozil D; Zgarbová M; Banáš P; Jurečka P; Otyepka M Phys Chem Chem Phys; 2012 Nov; 14(44):15257-77. PubMed ID: 23072945 [TBL] [Abstract][Full Text] [Related]
14. [The effect of electrostatic interactions on the conformation of the sugar-phosphate backbone in DNA]. Pechenaia VI Mol Biol (Mosk); 1992; 26(6):1416-25. PubMed ID: 1491682 [TBL] [Abstract][Full Text] [Related]
15. Oxepane nucleic acids: synthesis, characterization, and properties of oligonucleotides bearing a seven-membered carbohydrate ring. Sabatino D; Damha MJ J Am Chem Soc; 2007 Jul; 129(26):8259-70. PubMed ID: 17559214 [TBL] [Abstract][Full Text] [Related]
16. Toward safe genetically modified organisms through the chemical diversification of nucleic acids. Herdewijn P; Marlière P Chem Biodivers; 2009 Jun; 6(6):791-808. PubMed ID: 19554563 [TBL] [Abstract][Full Text] [Related]
17. An extra dimension in nucleic acid sequence recognition. Fox KR; Brown T Q Rev Biophys; 2005 Nov; 38(4):311-20. PubMed ID: 16737560 [TBL] [Abstract][Full Text] [Related]
18. Why does TNA cross-pair more strongly with RNA than with DNA? an answer from X-ray analysis. Pallan PS; Wilds CJ; Wawrzak Z; Krishnamurthy R; Eschenmoser A; Egli M Angew Chem Int Ed Engl; 2003; 42(47):5893-5. PubMed ID: 14673929 [No Abstract] [Full Text] [Related]
19. Oligonucleotides with sugars other than ribo- and 2'-deoxyribofuranose in the backbone: the solution structures determined by NMR in the context of the 'Etiology of nucleic acids' project of Albert Eschenmoser. Ebert MO; Jaun B Chem Biodivers; 2010 Sep; 7(9):2103-28. PubMed ID: 20860021 [No Abstract] [Full Text] [Related]
20. Synthesis and properties of a novel 2',4'-BNA bearing a urea bridged structure. Yahara A; Nishida M; Baba T; Kodama T; Imanishi T; Obika S Nucleic Acids Symp Ser (Oxf); 2009; (53):11-2. PubMed ID: 19749235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]