BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 16733696)

  • 1. Coordination of fore and hind leg stepping in cats on a transversely-split treadmill.
    Akay T; McVea DA; Tachibana A; Pearson KG
    Exp Brain Res; 2006 Nov; 175(2):211-22. PubMed ID: 16733696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition.
    Ekeberg O; Pearson K
    J Neurophysiol; 2005 Dec; 94(6):4256-68. PubMed ID: 16049149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task specific adaptations in rat locomotion: runway versus horizontal ladder.
    Bolton DA; Tse AD; Ballermann M; Misiaszek JE; Fouad K
    Behav Brain Res; 2006 Apr; 168(2):272-9. PubMed ID: 16406145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordination between the fore- and hindlimbs is bidirectional, asymmetrically organized, and flexible during quadrupedal locomotion in the intact adult cat.
    Thibaudier Y; Hurteau MF; Telonio A; Frigon A
    Neuroscience; 2013 Jun; 240():13-26. PubMed ID: 23485807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrective responses to loss of ground support during walking. II. Comparison of intact and chronic spinal cats.
    Hiebert GW; Gorassini MA; Jiang W; Prochazka A; Pearson KG
    J Neurophysiol; 1994 Feb; 71(2):611-22. PubMed ID: 8176430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of forelimb and hindlimb muscle activity during quadrupedal tied-belt and split-belt locomotion in intact cats.
    Frigon A; Thibaudier Y; Hurteau MF
    Neuroscience; 2015 Apr; 290():266-78. PubMed ID: 25644423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recruitment of gastrocnemius muscles during the swing phase of stepping following partial denervation of knee flexor muscles in the cat.
    Tachibana A; McVea DA; Donelan JM; Pearson KG
    Exp Brain Res; 2006 Mar; 169(4):449-60. PubMed ID: 16261338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forms of forward quadrupedal locomotion. III. A comparison of posture, hindlimb kinematics, and motor patterns for downslope and level walking.
    Smith JL; Carlson-Kuhta P; Trank TV
    J Neurophysiol; 1998 Apr; 79(4):1702-16. PubMed ID: 9535940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavioral and electromyographic characterization of mice lacking EphA4 receptors.
    Akay T; Acharya HJ; Fouad K; Pearson KG
    J Neurophysiol; 2006 Aug; 96(2):642-51. PubMed ID: 16641385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. System identification of muscle-joint interactions of the cat hind limb during locomotion.
    Harischandra N; Ekeberg O
    Biol Cybern; 2008 Aug; 99(2):125-38. PubMed ID: 18648849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human neuronal interlimb coordination during split-belt locomotion.
    Dietz V; Zijlstra W; Duysens J
    Exp Brain Res; 1994; 101(3):513-20. PubMed ID: 7851518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-lasting, context-dependent modification of stepping in the cat after repeated stumbling-corrective responses.
    McVea DA; Pearson KG
    J Neurophysiol; 2007 Jan; 97(1):659-69. PubMed ID: 17108090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait scoring in dogs with thoracolumbar spinal cord injuries when walking on a treadmill.
    Olby NJ; Lim JH; Babb K; Bach K; Domaracki C; Williams K; Griffith E; Harris T; Muguet-Chanoit A
    BMC Vet Res; 2014 Mar; 10():58. PubMed ID: 24597771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Split-belt treadmill stepping in infants suggests autonomous pattern generators for the left and right leg in humans.
    Yang JF; Lamont EV; Pang MY
    J Neurosci; 2005 Jul; 25(29):6869-76. PubMed ID: 16033896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spinal control of locomotion and step-to-step variability in left-right symmetry from slow to moderate speeds.
    Dambreville C; Labarre A; Thibaudier Y; Hurteau MF; Frigon A
    J Neurophysiol; 2015 Aug; 114(2):1119-28. PubMed ID: 26084910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intersegmental coordination: influence of a single walking leg on the neighboring segments in the stick insect walking system.
    Borgmann A; Scharstein H; Büschges A
    J Neurophysiol; 2007 Sep; 98(3):1685-96. PubMed ID: 17596420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention of hindlimb stepping ability in adult spinal cats after the cessation of step training.
    De Leon RD; Hodgson JA; Roy RR; Edgerton VR
    J Neurophysiol; 1999 Jan; 81(1):85-94. PubMed ID: 9914269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepping behavior and muscle activity of dairy cows on uncomfortable standing surfaces presented under 1 or 4 legs.
    Rajapaksha E; Tucker CB
    J Dairy Sci; 2015 Jan; 98(1):295-304. PubMed ID: 25465636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of timing electrical stimulation to robotic-assisted stepping on neuromuscular activity and associated kinematics.
    Askari S; Chao T; de Leon RD; Won DS
    J Rehabil Res Dev; 2013; 50(6):875-92. PubMed ID: 24203547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.