These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 16733696)

  • 21. Effects of functional decoupling of a leg in a model of stick insect walking incorporating three ipsilateral legs.
    Tóth TI; Daun S
    Physiol Rep; 2017 Feb; 5(4):. PubMed ID: 28242829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury.
    Dobkin BH; Harkema S; Requejo P; Edgerton VR
    J Neurol Rehabil; 1995; 9(4):183-90. PubMed ID: 11539274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of vertebral column muscles in level versus upslope treadmill walking-an electromyographic and kinematic study.
    Wada N; Akatani J; Miyajima N; Shimojo K; Kanda K
    Brain Res; 2006 May; 1090(1):99-109. PubMed ID: 16682013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A physiological analysis of walking in the American lobster (Homarus americanus).
    Macmillan DL
    Philos Trans R Soc Lond B Biol Sci; 1975 Feb; 270(901):1-59. PubMed ID: 234622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus).
    Courtine G; Roy RR; Hodgson J; McKay H; Raven J; Zhong H; Yang H; Tuszynski MH; Edgerton VR
    J Neurophysiol; 2005 Jun; 93(6):3127-45. PubMed ID: 15647397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of sensory feedback in the control of stance duration in walking cats.
    Pearson KG
    Brain Res Rev; 2008 Jan; 57(1):222-7. PubMed ID: 17761295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changing coupling between the arms and legs with slow walking speeds alters regulation of somatosensory feedback.
    Klarner T; Pearcey GEP; Sun Y; Barss TS; Zehr EP
    Exp Brain Res; 2020 May; 238(5):1335-1349. PubMed ID: 32333034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordination of the legs of a slow-walking cat.
    Cruse H; Warnecke H
    Exp Brain Res; 1992; 89(1):147-56. PubMed ID: 1601093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Context-dependent changes in strength and efficacy of leg coordination mechanisms.
    Dürr V
    J Exp Biol; 2005 Jun; 208(Pt 12):2253-67. PubMed ID: 15939768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A three-leg model producing tetrapod and tripod coordination patterns of ipsilateral legs in the stick insect.
    Tóth TI; Daun-Gruhn S
    J Neurophysiol; 2016 Feb; 115(2):887-906. PubMed ID: 26581871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A 3D analysis of fore- and hindlimb motion during overground and ladder walking: comparison of control and unloaded rats.
    Canu MH; Garnier C
    Exp Neurol; 2009 Jul; 218(1):98-108. PubMed ID: 19393236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury.
    Israel JF; Campbell DD; Kahn JH; Hornby TG
    Phys Ther; 2006 Nov; 86(11):1466-78. PubMed ID: 17079746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Infant stepping: a method to study the sensory control of human walking.
    Yang JF; Stephens MJ; Vishram R
    J Physiol; 1998 Mar; 507 ( Pt 3)(Pt 3):927-37. PubMed ID: 9508851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans.
    Nilsson J; Thorstensson A; Halbertsma J
    Acta Physiol Scand; 1985 Apr; 123(4):457-75. PubMed ID: 3993402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinematics and muscle activity of individuals with incomplete spinal cord injury during treadmill stepping with and without manual assistance.
    Domingo A; Sawicki GS; Ferris DP
    J Neuroeng Rehabil; 2007 Aug; 4():32. PubMed ID: 17711590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perturbation of the motor system in freely walking cockroaches. I. Rear leg amputation and the timing of motor activity in leg muscles.
    Delcomyn F
    J Exp Biol; 1991 Mar; 156():483-502. PubMed ID: 2051133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive hindlimb split-belt treadmill walking in rats by controlling basic muscle activation patterns via phase resetting.
    Fujiki S; Aoi S; Funato T; Sato Y; Tsuchiya K; Yanagihara D
    Sci Rep; 2018 Nov; 8(1):17341. PubMed ID: 30478405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The human spinal cord interprets velocity-dependent afferent input during stepping.
    Beres-Jones JA; Harkema SJ
    Brain; 2004 Oct; 127(Pt 10):2232-46. PubMed ID: 15289272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulating tibiofemoral contact force in the sheep hind limb via treadmill walking: Predictions from an opensim musculoskeletal model.
    Lerner ZF; Gadomski BC; Ipson AK; Haussler KK; Puttlitz CM; Browning RC
    J Orthop Res; 2015 Aug; 33(8):1128-33. PubMed ID: 25721318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recumbent stepping has similar but simpler neural control compared to walking.
    Stoloff RH; Zehr EP; Ferris DP
    Exp Brain Res; 2007 Apr; 178(4):427-38. PubMed ID: 17072607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.