These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16733843)

  • 21. One-step hydrothermal synthesis of a porous Cu2O film and its photoelectrochemical properties.
    Ji R; Sun W; Chu Y
    Chemphyschem; 2013 Dec; 14(17):3971-6. PubMed ID: 24203622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical synthesis of gallium nanowires and macroporous structures in an ionic liquid.
    Al Zoubi M; Al-Salman R; El Abedin SZ; Li Y; Endres F
    Chemphyschem; 2011 Oct; 12(15):2751-4. PubMed ID: 22002892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ambient surfactantless synthesis, growth mechanism, and size-dependent electrocatalytic behavior of high-quality, single crystalline palladium nanowires.
    Koenigsmann C; Santulli AC; Sutter E; Wong SS
    ACS Nano; 2011 Sep; 5(9):7471-87. PubMed ID: 21875051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Embedment of anodized p-type Cu₂O thin films with CuO nanowires for improvement in photoelectrochemical stability.
    Wang P; Ng YH; Amal R
    Nanoscale; 2013 Apr; 5(7):2952-8. PubMed ID: 23455357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High density p-type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithography.
    Li X; Koukharenko E; Nandhakumar IS; Tudor J; Beeby SP; White NM
    Phys Chem Chem Phys; 2009 May; 11(18):3584-90. PubMed ID: 19421565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the electronic structure of ZnO nanowires by valence electron energy loss spectroscopy.
    Wang J; Li Q; Egerton RF
    Micron; 2007; 38(4):346-53. PubMed ID: 16938457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bismuth telluride (Bi2Te3) nanowires: synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation.
    Menke EJ; Brown MA; Li Q; Hemminger JC; Penner RM
    Langmuir; 2006 Dec; 22(25):10564-74. PubMed ID: 17129031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis.
    Li Q; Walter EC; van der Veer WE; Murray BJ; Newberg JT; Bohannan EW; Switzer JA; Hemminger JC; Penner RM
    J Phys Chem B; 2005 Mar; 109(8):3169-82. PubMed ID: 16851337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical fabrication and characterization of Cu/Cu2O multi-layered micro and nanorods in Li-ion batteries.
    Rehnlund D; Valvo M; Tai CW; Ångström J; Sahlberg M; Edström K; Nyholm L
    Nanoscale; 2015 Aug; 7(32):13591-604. PubMed ID: 26206712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple solution route to single-crystalline Sb2O3 nanowires with rectangular cross sections.
    Deng Z; Tang F; Chen D; Meng X; Cao L; Zou B
    J Phys Chem B; 2006 Sep; 110(37):18225-30. PubMed ID: 16970439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile synthesis and excellent recyclable photocatalytic activity of pine cone-like Fe3O4@Cu2O/Cu porous nanocomposites.
    Wang H; Hu Y; Jiang Y; Qiu L; Wu H; Guo B; Shen Y; Wang Y; Zhu L; Xie A
    Dalton Trans; 2013 Apr; 42(14):4915-21. PubMed ID: 23380894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA-templated synthesis of ZnO thin layers and nanowires.
    Atanasova P; Weitz RT; Gerstel P; Srot V; Kopold P; van Aken PA; Burghard M; Bill J
    Nanotechnology; 2009 Sep; 20(36):365302. PubMed ID: 19687540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light-Irradiated Electrochemical Direct Construction of Cu
    Izaki M; Koyama T; Khoo PL; Shinagawa T
    ACS Omega; 2020 Jan; 5(1):683-691. PubMed ID: 31956818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photoluminescence and Raman scattering from catalytically grown Zn(x)Cd(1-x)Se alloy nanowires.
    Venugopal R; Lin PI; Chen YT
    J Phys Chem B; 2006 Jun; 110(24):11691-6. PubMed ID: 16800464
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films.
    Li CW; Kanan MW
    J Am Chem Soc; 2012 May; 134(17):7231-4. PubMed ID: 22506621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application.
    Zhong JH; Li GR; Wang ZL; Ou YN; Tong YX
    Inorg Chem; 2011 Feb; 50(3):757-63. PubMed ID: 21182331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth.
    McShane CM; Choi KS
    J Am Chem Soc; 2009 Feb; 131(7):2561-9. PubMed ID: 19199616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions.
    Wang Y; Jiang X; Xia Y
    J Am Chem Soc; 2003 Dec; 125(52):16176-7. PubMed ID: 14692744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of graded materials by laterally controlled template synthesis.
    Sehayek T; Vaskevich A; Rubinstein I
    J Am Chem Soc; 2003 Apr; 125(16):4718-9. PubMed ID: 12696884
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth.
    Ng CH; Fan WY
    J Phys Chem B; 2006 Oct; 110(42):20801-7. PubMed ID: 17048890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.