These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
395 related articles for article (PubMed ID: 16734466)
1. Self-location of acceptors as "isolated" or "stacked" energy traps in a supramolecular donor self-assembly: a strategy to wavelength tunable FRET emission. Ajayaghosh A; Vijayakumar C; Praveen VK; Babu SS; Varghese R J Am Chem Soc; 2006 Jun; 128(22):7174-5. PubMed ID: 16734466 [TBL] [Abstract][Full Text] [Related]
2. Self-assembled pi-nanotapes as donor scaffolds for selective and thermally gated fluorescence resonance energy transfer (FRET). Praveen VK; George SJ; Varghese R; Vijayakumar C; Ajayaghosh A J Am Chem Soc; 2006 Jun; 128(23):7542-50. PubMed ID: 16756309 [TBL] [Abstract][Full Text] [Related]
3. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins. Kumar CV; Duff MR Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505 [TBL] [Abstract][Full Text] [Related]
4. Strategy to control the chromism and fluorescence emission of a perylene dye in composite organogel phases. Simalou O; Zhao X; Lu R; Xue P; Yang X; Zhang X Langmuir; 2009 Oct; 25(19):11255-60. PubMed ID: 19739637 [TBL] [Abstract][Full Text] [Related]
5. Carbazole-based organogel as a scaffold to construct energy transfer arrays with controllable fluorescence emission. Yang X; Lu R; Xue P; Li B; Xu D; Xu T; Zhao Y Langmuir; 2008 Dec; 24(23):13730-5. PubMed ID: 18980355 [TBL] [Abstract][Full Text] [Related]
6. Core-substituted naphthalene bisimides: new fluorophors with tunable emission wavelength for FRET studies. Würthner F; Ahmed S; Thalacker C; Debaerdemaeker T Chemistry; 2002 Oct; 8(20):4742-50. PubMed ID: 12561114 [TBL] [Abstract][Full Text] [Related]
7. Fluorescent sensor for Cu2+ with a tunable emission wavelength. Mokhir A; Kiel A; Herten DP; Kraemer R Inorg Chem; 2005 Aug; 44(16):5661-6. PubMed ID: 16060616 [TBL] [Abstract][Full Text] [Related]
9. Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability. Duan P; Yanai N; Nagatomi H; Kimizuka N J Am Chem Soc; 2015 Feb; 137(5):1887-94. PubMed ID: 25599418 [TBL] [Abstract][Full Text] [Related]
10. Ultrafast fluorescence resonance energy transfer in a reverse micelle: excitation wavelength dependence. Mondal SK; Ghosh S; Sahu K; Mandal U; Bhattacharyya K J Chem Phys; 2006 Dec; 125(22):224710. PubMed ID: 17176157 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193 [TBL] [Abstract][Full Text] [Related]
12. Energy transfer dynamics in light-harvesting assemblies templated by the tobacco mosaic virus coat protein. Ma YZ; Miller RA; Fleming GR; Francis MB J Phys Chem B; 2008 Jun; 112(22):6887-92. PubMed ID: 18471010 [TBL] [Abstract][Full Text] [Related]
13. Wide-range light-harvesting donor-acceptor assemblies through specific intergelator interactions via self-assembly. Samanta SK; Bhattacharya S Chemistry; 2012 Dec; 18(49):15875-85. PubMed ID: 23074067 [TBL] [Abstract][Full Text] [Related]
14. Photophysical properties of oligophenylene ethynylenes modified by donor and/or acceptor groups. Yamaguchi Y; Shimoi Y; Ochi T; Wakamiya T; Matsubara Y; Yoshida Z J Phys Chem A; 2008 Jun; 112(23):5074-84. PubMed ID: 18491882 [TBL] [Abstract][Full Text] [Related]
15. Implication toward a simple strategy to generate efficiency-tunable fluorescence resonance energy transfer emission: intertwining medium-polarity-sensitive intramolecular charge transfer emission to fluorescence resonance energy transfer. Paul BK; Samanta A; Guchhait N J Phys Chem A; 2010 May; 114(20):6097-102. PubMed ID: 20443538 [TBL] [Abstract][Full Text] [Related]
16. Fluorescent DNA nanotags based on a self-assembled DNA tetrahedron. Ozhalici-Unal H; Armitage BA ACS Nano; 2009 Feb; 3(2):425-33. PubMed ID: 19236081 [TBL] [Abstract][Full Text] [Related]
17. Resonance energy transfer between green fluorescent protein variants: complexities revealed with myosin fusion proteins. Zeng W; Seward HE; Málnási-Csizmadia A; Wakelin S; Woolley RJ; Cheema GS; Basran J; Patel TR; Rowe AJ; Bagshaw CR Biochemistry; 2006 Sep; 45(35):10482-91. PubMed ID: 16939200 [TBL] [Abstract][Full Text] [Related]
19. Ultrafast fluorescence resonance energy transfer in the micelle and the gel phase of a PEO-PPO-PEO triblock copolymer: excitation wavelength dependence. Ghosh S; Dey S; Adhikari A; Mandal U; Bhattacharyya K J Phys Chem B; 2007 Jun; 111(25):7085-91. PubMed ID: 17530882 [TBL] [Abstract][Full Text] [Related]
20. DNA-directed assembly of supramolecular fluorescent protein energy transfer systems. Kukolka F; Schoeps O; Woggon U; Niemeyer CM Bioconjug Chem; 2007; 18(3):621-7. PubMed ID: 17378598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]