BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

528 related articles for article (PubMed ID: 16734482)

  • 1. A designed branched three-helix bundle protein dimer.
    Dolphin GT
    J Am Chem Soc; 2006 Jun; 128(22):7287-90. PubMed ID: 16734482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A designed well-folded monomeric four-helix bundle protein prepared by Fmoc solid-phase peptide synthesis and native chemical ligation.
    Dolphin GT
    Chemistry; 2006 Feb; 12(5):1436-47. PubMed ID: 16283689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3- Instead of 4-helix formation in a de novo designed protein in solution revealed by small-angle X-ray scattering.
    Høiberg-Nielsen R; Tofteng Shelton AP; Sørensen KK; Roessle M; Svergun DI; Thulstrup PW; Jensen KJ; Arleth L
    Chembiochem; 2008 Nov; 9(16):2663-72. PubMed ID: 18850602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of peptide design in four-, five-, and six-helix bundle template assembled synthetic protein molecules.
    Seo ES; Sherman JC
    Biopolymers; 2007; 88(5):774-9. PubMed ID: 17554752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha-helical assembly of biologically active peptides and designed helix bundle protein.
    Morii H; Honda S; Ohashi S; Uedaira H
    Biopolymers; 1994 Apr; 34(4):481-8. PubMed ID: 8186361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.
    Seebach D; Beck AK; Bierbaum DJ
    Chem Biodivers; 2004 Aug; 1(8):1111-239. PubMed ID: 17191902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic core malleability of a de novo designed three-helix bundle protein.
    Walsh ST; Sukharev VI; Betz SF; Vekshin NL; DeGrado WF
    J Mol Biol; 2001 Jan; 305(2):361-73. PubMed ID: 11124911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein design with L- and D-alpha-amino acid structures as the alphabet.
    Durani S
    Acc Chem Res; 2008 Oct; 41(10):1301-8. PubMed ID: 18642934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo design of a stable N-terminal helical foldamer.
    Nicoll AJ; Weston CJ; Cureton C; Ludwig C; Dancea F; Spencer N; Smart OS; Günther UL; Allemann RK
    Org Biomol Chem; 2005 Dec; 3(24):4310-5. PubMed ID: 16327890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A template-assembled model of the N-peptide helix bundle from HIV-1 Gp-41 with high affinity for C-peptide.
    Xu W; Taylor JW
    Chem Biol Drug Des; 2007 Oct; 70(4):319-28. PubMed ID: 17937777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of lambda Cro fold: solution structure of a monomeric variant of the de novo protein.
    Isogai Y; Ito Y; Ikeya T; Shiro Y; Ota M
    J Mol Biol; 2005 Dec; 354(4):801-14. PubMed ID: 16289118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational design of proteins stereochemically optimized in size, stability, and folding speed.
    Joshi S; Rana S; Wangikar P; Durani S
    Biopolymers; 2006 Oct; 83(2):122-34. PubMed ID: 16683262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helix packing motif common to the crystal structures of two undecapeptides containing dehydrophenylalanine residues: implications for the de novo design of helical bundle super secondary structural modules.
    Rudresh ; Gupta M; Ramakumar S; Chauhan VS
    Biopolymers; 2005; 80(5):617-27. PubMed ID: 16193455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of lysine reactivity in four-helix bundle proteins by site-selective pKa depression: expanding the versatility of proteins by postsynthetic functionalization.
    Andersson LK; Caspersson M; Baltzer L
    Chemistry; 2002 Aug; 8(16):3687-97. PubMed ID: 12203296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a bivalent peptide with two independent elements of secondary structure able to fold autonomously.
    Pantoja-Uceda D; Pastor MT; Salgado J; Pineda-Lucena A; Pérez-Payá E
    J Pept Sci; 2008 Jul; 14(7):845-54. PubMed ID: 18247449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular design of specific metal-binding peptide sequences from protein fragments: theory and experiment.
    Kozísek M; Svatos A; Budesínský M; Muck A; Bauer MC; Kotrba P; Ruml T; Havlas Z; Linse S; Rulísek L
    Chemistry; 2008; 14(26):7836-46. PubMed ID: 18633954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR structure of a de novo designed, peptide 33mer with two distinct, compact beta-sheet folds.
    Ilyina E; Roongta V; Mayo KH
    Biochemistry; 1997 Apr; 36(17):5245-50. PubMed ID: 9136886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond de novo protein design--de novo design of non-natural folded oligomers.
    Cheng RP
    Curr Opin Struct Biol; 2004 Aug; 14(4):512-20. PubMed ID: 15313247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of stable alpha-helices using global sequence optimization.
    Petukhov M; Tatsu Y; Tamaki K; Murase S; Uekawa H; Yoshikawa S; Serrano L; Yumoto N
    J Pept Sci; 2009 May; 15(5):359-65. PubMed ID: 19222027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.