BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16734718)

  • 1. The role of residue Thr249 in modulating the catalytic efficiency and substrate specificity of catechol-2,3-dioxygenase from Pseudomonas stutzeri OX1.
    Siani L; Viggiani A; Notomista E; Pezzella A; Di Donato A
    FEBS J; 2006 Jul; 273(13):2963-76. PubMed ID: 16734718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the conserved residues His-246, His-199, and Tyr-255 in the catalysis of catechol 2,3-dioxygenase from Pseudomonas stutzeri OX1.
    Viggiani A; Siani L; Notomista E; Birolo L; Pucci P; Di Donato A
    J Biol Chem; 2004 Nov; 279(47):48630-9. PubMed ID: 15347689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and homology modeling of 2-aminobiphenyl-2,3-diol-1,2-dioxygenase from Pseudomonas stutzeri carbazole degradation pathway.
    Larentis AL; Almeida RV; Rössle SC; Cardoso AM; Almeida WI; Bisch PM; Alves TL; Martins OB
    Cell Biochem Biophys; 2006; 44(3):530-8. PubMed ID: 16679541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis for the substrate selectivity of bicyclic and monocyclic extradiol dioxygenases.
    Vaillancourt FH; Fortin PD; Labbé G; Drouin NM; Karim Z; Agar NY; Eltis LD
    Biochem Biophys Res Commun; 2005 Dec; 338(1):215-22. PubMed ID: 16165093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regiospecificity of two multicomponent monooxygenases from Pseudomonas stutzeri OX1: molecular basis for catabolic adaptation of this microorganism to methylated aromatic compounds.
    Cafaro V; Notomista E; Capasso P; Di Donato A
    Appl Environ Microbiol; 2005 Aug; 71(8):4736-43. PubMed ID: 16085870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative structure-activity relationship for the cleavage of C3/C4-substituted catechols by a prototypal extradiol catechol dioxygenase with broad substrate specificity.
    Ishida T; Tanaka H; Horiike K
    J Biochem; 2004 Jun; 135(6):721-30. PubMed ID: 15213248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans: crystal structure of a peculiar ring-cleaving dioxygenase.
    Matera I; Ferraroni M; Bürger S; Scozzafava A; Stolz A; Briganti F
    J Mol Biol; 2008 Jul; 380(5):856-68. PubMed ID: 18572191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of alkylcatechol 2,3-dioxygenase from butylphenol degradation pathway of Pseudomonas putida MT4.
    Takeo M; Nishimura M; Takahashi H; Kitamura C; Kato D; Negoro S
    J Biosci Bioeng; 2007 Oct; 104(4):309-14. PubMed ID: 18023805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation of glutamic acid 103 of toluene o-xylene monooxygenase as a means to control the catabolic efficiency of a recombinant upper pathway for degradation of methylated aromatic compounds.
    Cafaro V; Notomista E; Capasso P; Di Donato A
    Appl Environ Microbiol; 2005 Aug; 71(8):4744-50. PubMed ID: 16085871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine-tuning of catalytic properties of catechol 1,2-dioxygenase by active site tailoring.
    Caglio R; Valetti F; Caposio P; Gribaudo G; Pessione E; Giunta C
    Chembiochem; 2009 Apr; 10(6):1015-24. PubMed ID: 19301316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of a non-heme-iron-dependent extradiol catechol dioxygenase: identification of mutants with intradiol oxidative cleavage activity.
    Schlosrich J; Eley KL; Crowley PJ; Bugg TD
    Chembiochem; 2006 Dec; 7(12):1899-908. PubMed ID: 17051653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis.
    Ang EL; Obbard JP; Zhao H
    FEBS J; 2007 Feb; 274(4):928-39. PubMed ID: 17269935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biphenyl-associated meta-cleavage dioxygenases from Comamonas testosteroni B-356.
    Hein P; Powlowski J; Barriault D; Hurtubise Y; Ahmad D; Sylvestre M
    Can J Microbiol; 1998 Jan; 44(1):42-9. PubMed ID: 9522448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-turnover kinetics of 2,3-dihydroxybiphenyl 1,2-dioxygenase reacting with 3-formylcatechol.
    Ishida T; Senda T; Tanaka H; Yamamoto A; Horiike K
    Biochem Biophys Res Commun; 2005 Dec; 338(1):223-9. PubMed ID: 16169514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cloning and characterization of a chromosome-encoded catechol 2,3-dioxygenase gene from Pseudomonas aeruginosa ZD 4-3].
    Chen Y-; Liu H; Zhu L-; Jin Y-
    Mikrobiologiia; 2004; 73(6):802-9. PubMed ID: 15688939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the binding interaction of substrate with catechol 2,3-dioxygenase from biophysics point of view.
    Zeng XH; Du H; Zhao HM; Xiang L; Feng NX; Li H; Li YW; Cai QY; Mo CH; Wong MH; He ZL
    J Hazard Mater; 2020 Jun; 391():122211. PubMed ID: 32036315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structures of L-rhamnose isomerase from Pseudomonas stutzeri in complexes with L-rhamnose and D-allose provide insights into broad substrate specificity.
    Yoshida H; Yamada M; Ohyama Y; Takada G; Izumori K; Kamitori S
    J Mol Biol; 2007 Feb; 365(5):1505-16. PubMed ID: 17141803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization and molecular modeling of methylcatechol 2,3-dioxygenase from o-xylene-degrading Rhodococcus sp. strain DK17.
    Kim D; Chae JC; Jang JY; Zylstra GJ; Kim YM; Kang BS; Kim E
    Biochem Biophys Res Commun; 2005 Jan; 326(4):880-6. PubMed ID: 15607751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mimicking the intradiol catechol cleavage activity of catechol dioxygenase by high-spin iron(III) complexes of a new class of a facially bound [N2O] ligand.
    Panda MK; John A; Shaikh MM; Ghosh P
    Inorg Chem; 2008 Dec; 47(24):11847-56. PubMed ID: 19006298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and mutagenesis of catechol 2,3-dioxygenase gene from the gram-positive Planococcus sp. strain S5.
    Hupert-Kocurek K; Stawicka A; Wojcieszyńska D; Guzik U
    J Mol Microbiol Biotechnol; 2013; 23(6):381-90. PubMed ID: 23921803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.