BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 16734746)

  • 1. Tyrosine kinases and osmolyte fluxes during hyposmotic swelling.
    Pasantes-Morales H; Lezama RA; Ramos-Mandujano G
    Acta Physiol (Oxf); 2006; 187(1-2):93-102. PubMed ID: 16734746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell membrane surface expression and tyrosine kinase regulate the osmolyte channel (skAE1) in skate erythrocytes.
    Perlman DF; Musch MW; Goldstein L
    Acta Physiol (Oxf); 2006; 187(1-2):87-91. PubMed ID: 16734745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine kinases and amino acid efflux under hyposmotic and ischaemic conditions in the chicken retina.
    de La Paz LD; Lezama R; Torres-Marquez ME; Pasantes-Morales H
    Pflugers Arch; 2002 Oct; 445(1):87-96. PubMed ID: 12397392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of three pathways for osmolyte efflux in human erythroleukemia cells.
    Huang CC; Hall AC; Lim PH
    Life Sci; 2007 Aug; 81(9):732-9. PubMed ID: 17698149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic osmolyte channels in cell volume regulation in vertebrates.
    Perlman DF; Goldstein L
    J Exp Zool; 1999 Jun; 283(7):725-33. PubMed ID: 10222593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiation of the osmosensitive release of taurine and D-aspartate from SH-SY5Y neuroblastoma cells after activation of M3 muscarinic cholinergic receptors.
    Heacock AM; Kerley D; Gurda GT; VanTroostenberghe AT; Fisher SK
    J Pharmacol Exp Ther; 2004 Dec; 311(3):1097-104. PubMed ID: 15292461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis.
    Stutzin A; Hoffmann EK
    Acta Physiol (Oxf); 2006; 187(1-2):27-42. PubMed ID: 16734740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band 3 in cell volume regulation in fish erythrocytes.
    Perlman DF; Musch MW; Goldstein L
    Cell Mol Biol (Noisy-le-grand); 1996 Nov; 42(7):975-84. PubMed ID: 8960774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane trafficking factors are involved in the hypotonic activation of the taurine channel in the little skate (Raja erinacea) red blood cell.
    Puffer AB; Meschter EE; Musch MW; Goldstein L
    J Exp Zool A Comp Exp Biol; 2006 Jul; 305(7):594-601. PubMed ID: 16615100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the osmolyte transport properties induced by trAE1 versus IClswell in Xenopus oocytes.
    Koomoa DL; Musch MW; Goldstein L
    J Membr Biol; 2002 Jan; 185(1):57-63. PubMed ID: 11891564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of volume-activated taurine and iodide efflux from term human placental tissue.
    Shennan DB
    Placenta; 1999; 20(5-6):485-91. PubMed ID: 10419814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of cell volume via microvillar ion channels.
    Lange K
    J Cell Physiol; 2000 Oct; 185(1):21-35. PubMed ID: 10942516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiology of cell volume regulation in vertebrates.
    Hoffmann EK; Lambert IH; Pedersen SF
    Physiol Rev; 2009 Jan; 89(1):193-277. PubMed ID: 19126758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell volume regulatory ion channels in cell proliferation and cell death.
    Lang F; Föller M; Lang K; Lang P; Ritter M; Vereninov A; Szabo I; Huber SM; Gulbins E
    Methods Enzymol; 2007; 428():209-25. PubMed ID: 17875419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of protein tyrosine kinases on cell volume change-induced taurine release.
    Pasantes-Morales H; Franco R
    Cerebellum; 2002 Apr; 1(2):103-9. PubMed ID: 12882359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further evidence for the existence of a volume-activated taurine efflux pathway in rat mammary tissue independent from volume-sensitive Cl- channels.
    Shennan DB; Thomson J
    Acta Physiol Scand; 2000 Feb; 168(2):295-9. PubMed ID: 10712567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory volume decrease and P receptor signaling in fish cells: mechanisms, physiology, and modeling approaches.
    Chara O; Espelt MV; Krumschnabel G; Schwarzbaum PJ
    J Exp Zool A Ecol Genet Physiol; 2011 Apr; 315(4):175-202. PubMed ID: 21290610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of calcium on regulatory volume decrease: role of potassium channels.
    Pasantes-Morales H; Morales Mulia S
    Nephron; 2000 Dec; 86(4):414-27. PubMed ID: 11124589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation by caveolin-1 of the hypotonicity-induced release of taurine and ATP at basolateral, but not apical, membrane of Caco-2 cells.
    Ullrich N; Caplanusi A; Brône B; Hermans D; Larivière E; Nilius B; Van Driessche W; Eggermont J
    Am J Physiol Cell Physiol; 2006 May; 290(5):C1287-96. PubMed ID: 16338968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol regulates volume-sensitive osmolyte efflux from human SH-SY5Y neuroblastoma cells following receptor activation.
    Cheema TA; Fisher SK
    J Pharmacol Exp Ther; 2008 Feb; 324(2):648-57. PubMed ID: 17991810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.