BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16735191)

  • 1. Magnetic resonance imaging of microstructure transition in stainless steel.
    Peeters JM; van Faassen EE; Bakker CJ
    Magn Reson Imaging; 2006 Jun; 24(5):663-72. PubMed ID: 16735191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Signal loss in magnetic resonance imaging caused by intraoral anchored dental magnetic materials].
    Blankenstein FH; Truong B; Thomas A; Schröder RJ; Naumann M
    Rofo; 2006 Aug; 178(8):787-93. PubMed ID: 16862505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow in porous metallic materials: a magnetic resonance imaging study.
    Xu S; Harel E; Michalak DJ; Crawford CW; Budker D; Pines A
    J Magn Reson Imaging; 2008 Nov; 28(5):1299-302. PubMed ID: 18972341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance imaging of phase transitions in nitinol.
    Peeters JM; van Faassen EE; Bakker CJ
    J Biomed Mater Res A; 2007 Mar; 80(4):938-45. PubMed ID: 17075800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and computational analyses of the effects of slice distortion from a metallic sphere in an MRI phantom.
    Hopper TA; Vasilić B; Pope JM; Jones CE; Epstein CL; Song HK; Wehrli FW
    Magn Reson Imaging; 2006 Oct; 24(8):1077-85. PubMed ID: 16997078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MR-imaging of the TMJ: artefacts caused by dental alloys.
    Behr M; Fellner C; Bayreuther G; Leibrock A; Held P; Fellner F; Handel G
    Eur J Prosthodont Restor Dent; 1996 Sep; 4(3):111-5. PubMed ID: 9171016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic susceptibility and electrical conductivity of metallic dental materials and their impact on MR imaging artifacts.
    Starcuková J; Starcuk Z; Hubálková H; Linetskiy I
    Dent Mater; 2008 Jun; 24(6):715-23. PubMed ID: 17884157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of low-strain thermo-mechanical processing on grain boundary network characteristics in type 304 austenitic stainless steel.
    Engelberg DL; Humphreys FJ; Marrow TJ
    J Microsc; 2008 Jun; 230(Pt 3):435-44. PubMed ID: 18503670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Overhauser contrast in proton-electron double-resonance imaging of the formation of an alginate hydrogel.
    Barros W; Engelsberg M
    J Magn Reson; 2007 Jan; 184(1):101-7. PubMed ID: 17049287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic field perturbation of neural recording and stimulating microelectrodes.
    Martinez-Santiesteban FM; Swanson SD; Noll DC; Anderson DJ
    Phys Med Biol; 2007 Apr; 52(8):2073-88. PubMed ID: 17404456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla.
    Welsch GH; Zak L; Mamisch TC; Resinger C; Marlovits S; Trattnig S
    Invest Radiol; 2009 Sep; 44(9):603-12. PubMed ID: 19692843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of mechanical deformation on magnetic properties and MRI artifacts of type 304 and type 316L stainless steel.
    Bendel LP; Shellock FG; Steckel M
    J Magn Reson Imaging; 1997; 7(6):1170-3. PubMed ID: 9400866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bonding of autopolymerizing acrylic resins to magnetic stainless steel alloys using metal conditioner.
    Shimizu H; Tsue F; Chen ZX; Kawaguchi T; Takahashi Y
    J Dent; 2008 Feb; 36(2):138-42. PubMed ID: 18191011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force-deflection properties of initial orthodontic archwires.
    Quintão CC; Cal-Neto JP; Menezes LM; Elias CN
    World J Orthod; 2009; 10(1):29-32. PubMed ID: 19388430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic field interactions of orthodontic wires during magnetic resonance imaging (MRI) at 1.5 Tesla.
    Klocke A; Kemper J; Schulze D; Adam G; Kahl-Nieke B
    J Orofac Orthop; 2005 Jul; 66(4):279-87. PubMed ID: 16044226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow imaging of fluids in porous media by magnetization prepared centric-scan SPRITE.
    Li L; Chen Q; Marble AE; Romero-Zerón L; Newling B; Balcom BJ
    J Magn Reson; 2009 Mar; 197(1):1-8. PubMed ID: 19121591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distortion-free magnetic resonance imaging in the zero-field limit.
    Kelso N; Lee SK; Bouchard LS; Demas V; Mück M; Pines A; Clarke J
    J Magn Reson; 2009 Oct; 200(2):285-90. PubMed ID: 19664947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A perspective on needle artifacts in MRI: an electromagnetic model for experimentally separating susceptibility effects.
    Glowinski A; Adam G; Bücker A; van Vaals J; Günther RW
    IEEE Trans Med Imaging; 2000 Dec; 19(12):1248-52. PubMed ID: 11212373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-temperature and high-pressure in situ SCC device for synchrotron radiation diffraction experiments and application using an austenitic stainless steel.
    Yamamoto A; Nakahigashi S; Terasawa M; Mitamura T; Akiniwa Y; Yamada T; Liu L; Shobu T; Tsubakino H
    J Synchrotron Radiat; 2006 Jan; 13(Pt 1):14-8. PubMed ID: 16371704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image correction during large and rapid B(0) variations in an open MRI system with permanent magnets using navigator echoes and phase compensation.
    Li J; Wang Y; Jiang Y; Xie H; Li G
    Magn Reson Imaging; 2009 Sep; 27(7):988-93. PubMed ID: 19369023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.