BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1673544)

  • 21. Quinolinate differentiates between forebrain and cerebellar NMDA receptors.
    Monaghan DT; Beaton JA
    Eur J Pharmacol; 1991 Feb; 194(1):123-5. PubMed ID: 1676371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissociation of [3H]L-glutamate uptake from L-glutamate-induced [3H]D-aspartate release by 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-4-carboxylic acid and 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-6-carboxylic acid, two conformationally constrained aspartate and glutamate analogs.
    Funicello M; Conti P; De Amici M; De Micheli C; Mennini T; Gobbi M
    Mol Pharmacol; 2004 Sep; 66(3):522-9. PubMed ID: 15322243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular uptake disguises action of L-glutamate on N-methyl-D-aspartate receptors. With an appendix: diffusion of transported amino acids into brain slices.
    Garthwaite J
    Br J Pharmacol; 1985 May; 85(1):297-307. PubMed ID: 2862941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glutamate uptake system in the presynaptic vesicle: glutamic acid analogs as inhibitors and alternate substrates.
    Winter HC; Ueda T
    Neurochem Res; 1993 Jan; 18(1):79-85. PubMed ID: 8096630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A conformationally restricted analogue of L-glutamate, the (2S,3R,4S) isomer of L-alpha-(carboxycyclopropyl)glycine, activates the NMDA-type receptor more markedly than NMDA in the isolated rat spinal cord.
    Shinozaki H; Ishida M; Shimamoto K; Ohfune Y
    Brain Res; 1989 Feb; 480(1-2):355-9. PubMed ID: 2565750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in preference for receptor subtypes of configurational variants of a glutamate analog: conversion from the NMDA-type to the non-NMDA type.
    Ishida M; Ohfune Y; Shimada Y; Shimamoto K; Shinozaki H
    Brain Res; 1991 May; 550(1):152-6. PubMed ID: 1653635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentiation of substrate and nonsubstrate inhibitors of the high-affinity, sodium-dependent glutamate transporters.
    Koch HP; Kavanaugh MP; Esslinger CS; Zerangue N; Humphrey JM; Amara SG; Chamberlin AR; Bridges RJ
    Mol Pharmacol; 1999 Dec; 56(6):1095-104. PubMed ID: 10570036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative study and partial characterization of multi-uptake systems for gamma-aminobutyric acid.
    Wood JD; Sidhu HS
    J Neurochem; 1987 Oct; 49(4):1202-8. PubMed ID: 2887634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of ascorbic acid on the binding of 3H-GABA and 3H-glutamic acid to synaptosomes of the rat cerebral cortex].
    Grigor'ev IP; Neokesariĭskiĭ AA
    Biull Eksp Biol Med; 1986 Sep; 102(9):288-9. PubMed ID: 2875748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformationally defined neurotransmitter analogues. Selective inhibition of glutamate uptake by one pyrrolidine-2,4-dicarboxylate diastereomer.
    Bridges RJ; Stanley MS; Anderson MW; Cotman CW; Chamberlin AR
    J Med Chem; 1991 Feb; 34(2):717-25. PubMed ID: 1671706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulatory action of kainic acid on glutamate release from rat brain cortical synaptosomes.
    Solyakov LS; Drany OA; Petrova LN; Bachurin SO
    Ann N Y Acad Sci; 1992 May; 648():251-3. PubMed ID: 1353329
    [No Abstract]   [Full Text] [Related]  

  • 32. Release of aspartate and glutamate caused by chloride reduction in synaptosomal incubation media.
    Hardy JA; Boakes RJ; Thomas DJ; Kidd AM; Edwardson JA; Virmani M; Turner J; Dodd PR
    J Neurochem; 1984 Mar; 42(3):875-7. PubMed ID: 6141228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model of high affinity glutamic acid transport by rat cortical synaptosomes--a refinement of the originally proposed model.
    Wheeler DD
    J Neurochem; 1979 Oct; 33(4):883-94. PubMed ID: 490163
    [No Abstract]   [Full Text] [Related]  

  • 34. Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex.
    Montague PR; Gancayco CD; Winn MJ; Marchase RB; Friedlander MJ
    Science; 1994 Feb; 263(5149):973-7. PubMed ID: 7508638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutaminase inhibition and the release of neurotransmitter glutamate from synaptosomes.
    Bradford HF; Ward HK; Foley P
    Brain Res; 1989 Jan; 476(1):29-34. PubMed ID: 2563333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [3H]CGP 39653: a new N-methyl-D-aspartate antagonist radioligand with low nanomolar affinity in rat brain.
    Sills MA; Fagg G; Pozza M; Angst C; Brundish DE; Hurt SD; Wilusz EJ; Williams M
    Eur J Pharmacol; 1991 Jan; 192(1):19-24. PubMed ID: 1674916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arachidonic acid inhibits choline uptake and depletes acetylcholine content in rat cerebral cortical synaptosomes.
    Boksa P; Mykita S; Collier B
    J Neurochem; 1988 Apr; 50(4):1309-18. PubMed ID: 3126267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glutamate stimulation of 45Ca uptake by rat striatal synaptosomes.
    Retz KC; Young AC; Coyle JT
    Eur J Pharmacol; 1982 Apr; 79(3-4):319-22. PubMed ID: 6124433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potent NMDA-like actions and potentiation of glutamate responses by conformational variants of a glutamate analogue in the rat spinal cord.
    Shinozaki H; Ishida M; Shimamoto K; Ohfune Y
    Br J Pharmacol; 1989 Dec; 98(4):1213-24. PubMed ID: 2692753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. D,L-(tetrazol-5-yl) glycine: a novel and highly potent NMDA receptor agonist.
    Schoepp DD; Smith CL; Lodge D; Millar JD; Leander JD; Sacaan AI; Lunn WH
    Eur J Pharmacol; 1991 Oct; 203(2):237-43. PubMed ID: 1686860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.