These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16735749)

  • 1. The histidine utilization (hut) genes of Pseudomonas fluorescens SBW25 are active on plant surfaces, but are not required for competitive colonization of sugar beet seedlings.
    Zhang XX; George A; Bailey MJ; Rainey PB
    Microbiology (Reading); 2006 Jun; 152(Pt 6):1867-1875. PubMed ID: 16735749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic analysis of the histidine utilization (hut) genes in Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    Genetics; 2007 Aug; 176(4):2165-76. PubMed ID: 17717196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic characterization of psp encoding the DING protein in Pseudomonas fluorescens SBW25.
    Zhang XX; Scott K; Meffin R; Rainey PB
    BMC Microbiol; 2007 Dec; 7():114. PubMed ID: 18088430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic characterization of Pseudomonas fluorescens SBW25 rsp gene expression in the phytosphere and in vitro.
    Jackson RW; Preston GM; Rainey PB
    J Bacteriol; 2005 Dec; 187(24):8477-88. PubMed ID: 16321952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Regulatory Roles of the Histidine-Responsive Transcriptional Repressor HutC in Pseudomonas fluorescens SBW25.
    Naren N; Zhang XX
    J Bacteriol; 2020 Jun; 202(13):. PubMed ID: 32291279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Jones J; Studholme DJ; Knight CG; Preston GM
    Environ Microbiol; 2007 Dec; 9(12):3046-64. PubMed ID: 17991033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens.
    Martínez-Granero F; Capdevila S; Sánchez-Contreras M; Martín M; Rivilla R
    Microbiology (Reading); 2005 Mar; 151(Pt 3):975-983. PubMed ID: 15758242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of a P1-type ATPase from Pseudomonas fluorescens SBW25 in copper homeostasis and plant colonization.
    Zhang XX; Rainey PB
    Mol Plant Microbe Interact; 2007 May; 20(5):581-8. PubMed ID: 17506335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual involvement of CbrAB and NtrBC in the regulation of histidine utilization in Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    Genetics; 2008 Jan; 178(1):185-95. PubMed ID: 18202367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in transport explains polymorphism of histidine and urocanate utilization in a natural Pseudomonas population.
    Zhang XX; Chang H; Tran SL; Gauntlett JC; Cook GM; Rainey PB
    Environ Microbiol; 2012 Aug; 14(8):1941-51. PubMed ID: 22225938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96.
    Mavrodi OV; Mavrodi DV; Weller DM; Thomashow LS
    Appl Environ Microbiol; 2006 Nov; 72(11):7111-22. PubMed ID: 16936061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25.
    Preston GM; Bertrand N; Rainey PB
    Mol Microbiol; 2001 Sep; 41(5):999-1014. PubMed ID: 11555282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces.
    Gal M; Preston GM; Massey RC; Spiers AJ; Rainey PB
    Mol Ecol; 2003 Nov; 12(11):3109-21. PubMed ID: 14629390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the SPI-1 and Rsp type three secretion systems in Pseudomonas fluorescens F113.
    Barret M; Egan F; Moynihan J; Morrissey JP; Lesouhaitier O; O'Gara F
    Environ Microbiol Rep; 2013 Jun; 5(3):377-86. PubMed ID: 23754718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB
    BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion.
    Alsohim AS; Taylor TB; Barrett GA; Gallie J; Zhang XX; Altamirano-Junqueira AE; Johnson LJ; Rainey PB; Jackson RW
    Environ Microbiol; 2014 Jul; 16(7):2267-81. PubMed ID: 24684210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere.
    Nielsen TH; Sørensen J
    Appl Environ Microbiol; 2003 Feb; 69(2):861-8. PubMed ID: 12571005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for signaling between the phytopathogenic fungus Pythium ultimum and Pseudomonas fluorescens F113: P. ultimum represses the expression of genes in P. fluorescens F113, resulting in altered ecological fitness.
    Fedi S; Tola E; Moënne-Loccoz Y; Dowling DN; Smith LM; O'Gara F
    Appl Environ Microbiol; 1997 Nov; 63(11):4261-6. PubMed ID: 9361412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell Raman spectral profiles of Pseudomonas fluorescens SBW25 reflects in vitro and in planta metabolic history.
    Huang WE; Bailey MJ; Thompson IP; Whiteley AS; Spiers AJ
    Microb Ecol; 2007 Apr; 53(3):414-25. PubMed ID: 17334857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of copper homeostasis in Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    Environ Microbiol; 2008 Dec; 10(12):3284-94. PubMed ID: 18707611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.