These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16736503)

  • 1. Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles.
    Lapotko DO; Lukianova E; Oraevsky AA
    Lasers Surg Med; 2006 Jul; 38(6):631-42. PubMed ID: 16736503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles.
    Hleb EY; Hafner JH; Myers JN; Hanna EY; Rostro BC; Zhdanok SA; Lapotko DO
    Nanomedicine (Lond); 2008 Oct; 3(5):647-67. PubMed ID: 18817468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photothermal bubbles as optical scattering probes for imaging living cells.
    Hleb EY; Hu Y; Drezek RA; Hafner JH; Lapotko DO
    Nanomedicine (Lond); 2008 Dec; 3(6):797-812. PubMed ID: 19025454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method of laser activated nano-thermolysis for elimination of tumor cells.
    Lapotko D; Lukianova E; Potapnev M; Aleinikova O; Oraevsky A
    Cancer Lett; 2006 Jul; 239(1):36-45. PubMed ID: 16202512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method for disruption and re-canalization of atherosclerotic plaques in coronary vessels with photothermal bubbles generated around gold nanoparticles.
    Lukianova-Hleb EY; Mrochek AG; Lapotko DO
    Lasers Surg Med; 2009 Mar; 41(3):240-7. PubMed ID: 19291755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling photothermal and acoustical induced microbubble generation and growth.
    Krasovitski B; Kislev H; Kimmel E
    Ultrasonics; 2007 Dec; 47(1-4):90-101. PubMed ID: 17910969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing laser therapy using PEGylated gold nanoparticles combined with ultrasound and microbubbles.
    Tarapacki C; Karshafian R
    Ultrasonics; 2015 Mar; 57():36-43. PubMed ID: 25459371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing laser thermal-therapy using ultrasound-microbubbles and gold nanorods of in vitro cells.
    Tarapacki C; Kumaradas C; Karshafian R
    Ultrasonics; 2013 Mar; 53(3):793-8. PubMed ID: 23290827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optically induced resonance of nanoparticle-loaded microbubbles.
    Dove JD; Borden MA; Murray TW
    Opt Lett; 2014 Jul; 39(13):3732-5. PubMed ID: 24978723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable plasmonic nanobubbles for cell theranostics.
    Lukianova-Hleb EY; Hanna EY; Hafner JH; Lapotko DO
    Nanotechnology; 2010 Feb; 21(8):85102. PubMed ID: 20097970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photothermal properties of gold nanoparticles under exposure to high optical energies.
    Hleb EY; Lapotko DO
    Nanotechnology; 2008 Sep; 19(35):355702. PubMed ID: 21828856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy.
    Zharov VP; Galitovskaya EN; Johnson C; Kelly T
    Lasers Surg Med; 2005 Sep; 37(3):219-26. PubMed ID: 16175635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetically Programmed Clusters of Gold Nanoparticles for Cancer Cell-Targeted Photothermal Therapy.
    Oh MH; Yu JH; Kim I; Nam YS
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22578-86. PubMed ID: 26413999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective photothermal efficiency of citrate capped gold nanoparticles for destruction of cancer cells.
    Raji V; Kumar J; Rejiya CS; Vibin M; Shenoi VN; Abraham A
    Exp Cell Res; 2011 Aug; 317(14):2052-8. PubMed ID: 21565190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional hybrid materials for combined photo and chemotherapy of cancer.
    Botella P; Ortega I; Quesada M; Madrigal RF; Muniesa C; Fimia A; Fernández E; Corma A
    Dalton Trans; 2012 Aug; 41(31):9286-96. PubMed ID: 22555652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells.
    Cheng LC; Chen HM; Lai TC; Chan YC; Liu RS; Sung JC; Hsiao M; Chen CH; Her LJ; Tsai DP
    Nanoscale; 2013 May; 5(9):3931-40. PubMed ID: 23536050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers.
    Huang X; Kang B; Qian W; Mackey MA; Chen PC; Oyelere AK; El-Sayed IH; El-Sayed MA
    J Biomed Opt; 2010; 15(5):058002. PubMed ID: 21054128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy.
    Luo YL; Shiao YS; Huang YF
    ACS Nano; 2011 Oct; 5(10):7796-804. PubMed ID: 21942498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy.
    Jung S; Nam J; Hwang S; Park J; Hur J; Im K; Park N; Kim S
    Anal Chem; 2013 Aug; 85(16):7674-81. PubMed ID: 23883363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine crystallization in solution by CW laser-induced microbubble on gold thin film surface.
    Uwada T; Fujii S; Sugiyama T; Usman A; Miura A; Masuhara H; Kanaizuka K; Haga MA
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1158-63. PubMed ID: 22339812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.