These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 16736759)

  • 1. Evaluating the binding affinities of NF-kappaB protein to the single-nucleotide mismatch DNA binding sites by using double-stranded DNA microarray.
    Bai Y; Ge Q; Liu Q; Li T; Wang J; Lu Z
    J Nanosci Nanotechnol; 2006 Apr; 6(4):1014-8. PubMed ID: 16736759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the binding affinities of NF-kappaB p50 homodimer to the wild-type and single-nucleotide mutant Ig-kappaB sites by the unimolecular dsDNA microarray.
    Wang JK; Li TX; Bai YF; Lu ZH
    Anal Biochem; 2003 May; 316(2):192-201. PubMed ID: 12711340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A free-labeled method for DNA-binding protein detection using a double-stranded DNA microarray.
    Bai Y; Ge Q; Liu Q; Li T; Wang J; Lu Z
    J Nanosci Nanotechnol; 2005 Aug; 5(8):1216-9. PubMed ID: 16193980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA microarrays with unimolecular hairpin double-stranded DNA probes: fabrication and exploration of sequence-specific DNA/protein interactions.
    Wang J; Bai Y; Li T; Lu Z
    J Biochem Biophys Methods; 2003 Mar; 55(3):215-32. PubMed ID: 12706906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-nucleotide mutation matrix: a new model for predicting the NF-κB DNA binding sites.
    Du W; Gao J; Wang T; Wang J
    PLoS One; 2014; 9(7):e101490. PubMed ID: 24992458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of single nucleotide mutation by using a new class of immobilized shared-stem double-stranded DNA probes.
    Bai Y; Lin D; Han Q; Jia Y; Tu J; Luo J; Ge Q; Zhang D; Lu Z
    J Biomed Nanotechnol; 2011 Oct; 7(5):640-7. PubMed ID: 22195481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microarray-based method to evaluate the accuracy of restriction endonucleases HpaII and MspI.
    Hou P; Ji M; He N; Lu Z
    Biochem Biophys Res Commun; 2004 Jan; 314(1):110-7. PubMed ID: 14715253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chip-based microelectrodes for detection of single-nucleotide mismatch.
    Li X; Zhou Y; Sutherland TC; Baker B; Lee JS; Kraatz HB
    Anal Chem; 2005 Sep; 77(17):5766-9. PubMed ID: 16131094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Double-stranded DNA microarray: principal, techniques and applications].
    Pan Y; Wang JK
    Yi Chuan; 2013 Mar; 35(3):287-306. PubMed ID: 23575535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of single central base pair mismatch on the conformation and stability of surface immobilized DNA: molecular dynamics studies.
    Wang Z; He N; Li S
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6465-9. PubMed ID: 19908550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label free analysis of transcription factors using microcantilever arrays.
    Huber F; Hegner M; Gerber C; Güntherodt HJ; Lang HP
    Biosens Bioelectron; 2006 Feb; 21(8):1599-605. PubMed ID: 16137876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of point-mutations on the hybridization affinity of surface-bound DNA/DNA and RNA/DNA oligonucleotide-duplexes: comparison of single base mismatches and base bulges.
    Naiser T; Ehler O; Kayser J; Mai T; Michel W; Ott A
    BMC Biotechnol; 2008 May; 8():48. PubMed ID: 18477387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for detection of single-base mismatches using bimolecular beacons.
    Frutos AG; Pal S; Quesada M; Lahiri J
    J Am Chem Soc; 2002 Mar; 124(11):2396-7. PubMed ID: 11890762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy and reproducibility of protein-DNA microarray technology.
    Field S; Udalova I; Ragoussis J
    Adv Biochem Eng Biotechnol; 2007; 104():87-110. PubMed ID: 17290820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2-Msh6 mismatch repair protein.
    Antony E; Khubchandani S; Chen S; Hingorani MM
    DNA Repair (Amst); 2006 Feb; 5(2):153-62. PubMed ID: 16214425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimer of 2,7-diamino-1,8-naphthyridine for the detection of mismatches formed by pyrimidine nucleotide bases.
    Kobori A; Nakatani K
    Bioorg Med Chem; 2008 Dec; 16(24):10338-44. PubMed ID: 18996698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscopy identification of transcription factor NFkappaB bound to streptavidin-pin-holding DNA probe.
    Seong GH; Yanagida Y; Aizawa M; Kobatake E
    Anal Biochem; 2002 Oct; 309(2):241-7. PubMed ID: 12413457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidized guanine lesions as modulators of gene transcription. Altered p50 binding affinity and repair shielding by 7,8-dihydro-8-oxo-2'-deoxyguanosine lesions in the NF-kappaB promoter element.
    Hailer-Morrison MK; Kotler JM; Martin BD; Sugden KD
    Biochemistry; 2003 Aug; 42(32):9761-70. PubMed ID: 12911319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-DNA interaction: impedance study of MutS binding to a DNA mismatch.
    Li CZ; Long YT; Lee JS; Kraatz HB
    Chem Commun (Camb); 2004 Mar; (5):574-5. PubMed ID: 14973614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single base mismatch detection by microsecond voltage pulses.
    Fixe F; Chu V; Prazeres DM; Conde JP
    Biosens Bioelectron; 2005 Dec; 21(6):888-93. PubMed ID: 16257657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.