These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 16737225)

  • 1. Mass spectrometry investigations on electrolyte degradation products for the development of nanocomposite electrodes in lithium ion batteries.
    Gireaud L; Grugeon S; Pilard S; Guenot P; Tarascon JM; Laruelle S
    Anal Chem; 2006 Jun; 78(11):3688-98. PubMed ID: 16737225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study.
    Gachot G; Ribière P; Mathiron D; Grugeon S; Armand M; Leriche JB; Pilard S; Laruelle S
    Anal Chem; 2011 Jan; 83(2):478-85. PubMed ID: 21155595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of electrochemical degradation products of sulphonated azo dyes using high-performance liquid chromatography/tandem mass spectrometry.
    Vanerková D; Sakalis A; Holcapek M; Jandera P; Voulgaropoulos A
    Rapid Commun Mass Spectrom; 2006; 20(19):2807-15. PubMed ID: 16941542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersion properties of aqueous-based LiFePO4 pastes and their electrochemical performance for lithium batteries.
    Lee JH; Kim JS; Kim YC; Zang DS; Paik U
    Ultramicroscopy; 2008 Sep; 108(10):1256-9. PubMed ID: 18550285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the Cathode Electrolyte Interface in Lithium Ion Batteries by Desorption Electrospray Ionization Mass Spectrometry.
    Liu YM; G Nicolau B; Esbenshade JL; Gewirth AA
    Anal Chem; 2016 Jul; 88(14):7171-7. PubMed ID: 27346184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR Study of the Degradation Products of Ethylene Carbonate in Silicon-Lithium Ion Batteries.
    Jin Y; Kneusels NH; Grey CP
    J Phys Chem Lett; 2019 Oct; 10(20):6345-6350. PubMed ID: 31584832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and formation mechanism of individual degradation products in lithium-ion batteries studied by liquid chromatography/electrospray ionization mass spectrometry and atmospheric solid analysis probe mass spectrometry.
    Takeda S; Morimura W; Liu YH; Sakai T; Saito Y
    Rapid Commun Mass Spectrom; 2016 Aug; 30(15):1754-62. PubMed ID: 27426451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured silicon anodes for lithium ion rechargeable batteries.
    Teki R; Datta MK; Krishnan R; Parker TC; Lu TM; Kumta PN; Koratkar N
    Small; 2009 Oct; 5(20):2236-42. PubMed ID: 19739146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.
    Scrosati B
    Chem Rec; 2005; 5(5):286-97. PubMed ID: 16211622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance.
    Gao J; Lowe MA; Conte S; Burkhardt SE; Abruña HD
    Chemistry; 2012 Jul; 18(27):8521-6. PubMed ID: 22644940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating the beneficial effect of vinylene carbonate on the electrochemistry of antimony electrodes in lithium batteries.
    Martín F; Morales J; Sánchez L
    Chemphyschem; 2008 Dec; 9(17):2610-7. PubMed ID: 18988210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrode Degradation in Lithium-Ion Batteries.
    Pender JP; Jha G; Youn DH; Ziegler JM; Andoni I; Choi EJ; Heller A; Dunn BS; Weiss PS; Penner RM; Mullins CB
    ACS Nano; 2020 Feb; 14(2):1243-1295. PubMed ID: 31895532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries.
    Chen H; Armand M; Demailly G; Dolhem F; Poizot P; Tarascon JM
    ChemSusChem; 2008; 1(4):348-55. PubMed ID: 18605101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes.
    Nam KT; Kim DW; Yoo PJ; Chiang CY; Meethong N; Hammond PT; Chiang YM; Belcher AM
    Science; 2006 May; 312(5775):885-8. PubMed ID: 16601154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of photocatalytic degradation products of bezafibrate in TiO(2) aqueous suspensions by liquid and gas chromatography.
    Lambropoulou DA; Hernando MD; Konstantinou IK; Thurman EM; Ferrer I; Albanis TA; Fernández-Alba AR
    J Chromatogr A; 2008 Mar; 1183(1-2):38-48. PubMed ID: 18241873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium-ion batteries: runaway risk of forming toxic compounds.
    Hammami A; Raymond N; Armand M
    Nature; 2003 Aug; 424(6949):635-6. PubMed ID: 12904779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes.
    Kraft V; Grützke M; Weber W; Menzel J; Wiemers-Meyer S; Winter M; Nowak S
    J Chromatogr A; 2015 Aug; 1409():201-9. PubMed ID: 26209196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes.
    Etacheri V; Haik O; Goffer Y; Roberts GA; Stefan IC; Fasching R; Aurbach D
    Langmuir; 2012 Jan; 28(1):965-76. PubMed ID: 22103983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.