BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16737770)

  • 1. Low-frequency normal modes in horse liver alcohol dehydrogenase and motions of residues involved in the enzymatic reaction.
    Luo J; Bruice TC
    Biophys Chem; 2007 Mar; 126(1-3):80-5. PubMed ID: 16737770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic.
    Krebs WG; Alexandrov V; Wilson CA; Echols N; Yu H; Gerstein M
    Proteins; 2002 Sep; 48(4):682-95. PubMed ID: 12211036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relating protein motion to catalysis.
    Hammes-Schiffer S; Benkovic SJ
    Annu Rev Biochem; 2006; 75():519-41. PubMed ID: 16756501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site.
    Brandt EG; Hellgren M; Brinck T; Bergman T; Edholm O
    Phys Chem Chem Phys; 2009 Feb; 11(6):975-83. PubMed ID: 19177216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of hydrostatic pressure on horse liver alcohol dehydrogenase (HLADH): a new way of analyzing kinetic study.
    Trovaslet M; Legoy MD; Dallet-Choisy S
    Cell Mol Biol (Noisy-le-grand); 2004 Jun; 50(4):353-9. PubMed ID: 15529745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large scale motions in a biosensor protein glucose oxidase: a combined approach by QENS, normal mode analysis, and molecular dynamics studies.
    Tatke SS; Loong CK; D'Souza N; Schoephoerster RT; Prabhakaran M
    Biopolymers; 2008 Jul; 89(7):582-94. PubMed ID: 18273893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of protein domain motions by neutron spectroscopy.
    Monkenbusch M; Richter D; Biehl R
    Chemphyschem; 2010 Apr; 11(6):1188-94. PubMed ID: 19924753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a protein-promoting vibration in the reaction catalyzed by horse liver alcohol dehydrogenase.
    Caratzoulas S; Mincer JS; Schwartz SD
    J Am Chem Soc; 2002 Apr; 124(13):3270-6. PubMed ID: 11916410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snapshots of transition states?
    Penner-Hahn JE
    Nat Struct Biol; 2003 Feb; 10(2):75-7. PubMed ID: 12555079
    [No Abstract]   [Full Text] [Related]  

  • 10. Ten-nanosecond molecular dynamics simulation of the motions of the horse liver alcohol dehydrogenase.PhCH2O- complex.
    Luo J; Bruice TC
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16597-600. PubMed ID: 12481026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses.
    Ahmed A; Villinger S; Gohlke H
    Proteins; 2010 Dec; 78(16):3341-52. PubMed ID: 20848551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of dynamical correlations within the myosin motor domain by the normal mode analysis of an elastic network model.
    Zheng W; Brooks B
    J Mol Biol; 2005 Feb; 346(3):745-59. PubMed ID: 15713460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acrylamide quenching of Trp phosphorescence in liver alcohol dehydrogenase: evidence of gated quencher penetration.
    Strambini GB; Gonnelli M
    Biochemistry; 2009 Aug; 48(31):7482-91. PubMed ID: 19594170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent structure of the E x S complex of Bacillus stearothermophilus alcohol dehydrogenase.
    Zhang X; Bruice TC
    Biochemistry; 2007 Jan; 46(3):837-43. PubMed ID: 17223705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anticorrelated motions as a driving force in enzyme catalysis: the dehydrogenase reaction.
    Luo J; Bruice TC
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13152-6. PubMed ID: 15331786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normal-mode-based modeling of allosteric couplings that underlie cyclic conformational transition in F(1) ATPase.
    Zheng W
    Proteins; 2009 Aug; 76(3):747-62. PubMed ID: 19280602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deprotonation of the horse liver alcohol dehydrogenase-NAD+ complex controls formation of the ternary complexes.
    Kovaleva EG; Plapp BV
    Biochemistry; 2005 Sep; 44(38):12797-808. PubMed ID: 16171395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of domain motions of substrate-free S-adenosyl- L-homocysteine hydrolase in solution.
    Hu C; Fang J; Borchardt RT; Schowen RL; Kuczera K
    Proteins; 2008 Apr; 71(1):131-43. PubMed ID: 17932938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of Saccharomyces cerevisiae 6-phosphogluconate dehydrogenase Gnd1.
    He W; Wang Y; Liu W; Zhou CZ
    BMC Struct Biol; 2007 Jun; 7():38. PubMed ID: 17570834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of structural fluctuations to deamidation reaction in triosephosphate isomerase by Gaussian network model.
    Konuklar FA; Aviyente V; Haliloğlu T
    Proteins; 2006 Mar; 62(3):715-27. PubMed ID: 16323206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.