BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16738548)

  • 1. Global analysis of gene function in yeast by quantitative phenotypic profiling.
    Brown JA; Sherlock G; Myers CL; Burrows NM; Deng C; Wu HI; McCann KE; Troyanskaya OG; Brown JM
    Mol Syst Biol; 2006; 2():2006.0001. PubMed ID: 16738548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Phenotypic manifestation and trans-conversion of primary genetic material damages considered in the alpha-test on the yeast Saccharomyces cerevisiae].
    Stepchenkova EI; Kochenova OV; Zhuk AS; Andreĭchuk IuV; Inge-Vechtomov SG
    Gig Sanit; 2011; (6):64-9. PubMed ID: 22250397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic quantification of gene interactions by phenotypic array analysis.
    Hartman JL; Tippery NP
    Genome Biol; 2004; 5(7):R49. PubMed ID: 15239834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of yeast gene function using competition experiments in continuous culture.
    Baganz F; Hayes A; Farquhar R; Butler PR; Gardner DC; Oliver SG
    Yeast; 1998 Nov; 14(15):1417-27. PubMed ID: 9848233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous mutation, oxidative DNA damage, and the roles of base and nucleotide excision repair in the yeast Saccharomyces cerevisiae.
    Scott AD; Neishabury M; Jones DH; Reed SH; Boiteux S; Waters R
    Yeast; 1999 Feb; 15(3):205-18. PubMed ID: 10077187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA double-strand breaks and the RAD50-RAD57 genes in Saccharomyces.
    Game JC
    Semin Cancer Biol; 1993 Apr; 4(2):73-83. PubMed ID: 8513150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further phenotypic characterization of pso mutants of Saccharomyces cerevisiae with respect to DNA repair and response to oxidative stress.
    Pungartnik C; Picada J; Brendel M; Henriques JA
    Genet Mol Res; 2002 Mar; 1(1):79-89. PubMed ID: 14963816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of RAD16, a yeast excision repair gene homologous to the recombinational repair gene RAD54 and to the SNF2 gene involved in transcriptional activation.
    Schild D; Glassner BJ; Mortimer RK; Carlson M; Laurent BC
    Yeast; 1992 May; 8(5):385-95. PubMed ID: 1626430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C; Cárdenas J; Melo F; Agosin E
    Yeast; 2005 Apr; 22(5):369-83. PubMed ID: 15806604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions.
    Qian J; Dolled-Filhart M; Lin J; Yu H; Gerstein M
    J Mol Biol; 2001 Dec; 314(5):1053-66. PubMed ID: 11743722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale phenotypic analysis reveals identical contributions to cell functions of known and unknown yeast genes.
    Bianchi MM; Ngo S; Vandenbol M; Sartori G; Morlupi A; Ricci C; Stefani S; Morlino GB; Hilger F; Carignani G; Slonimski PP; Frontali L
    Yeast; 2001 Nov; 18(15):1397-412. PubMed ID: 11746602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic phenotyping of the essential and non-essential yeast genome detects novel pathways for alkylation resistance.
    Svensson JP; Pesudo LQ; Fry RC; Adeleye YA; Carmichael P; Samson LD
    BMC Syst Biol; 2011 Oct; 5():157. PubMed ID: 21978764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules.
    Guo J; Tian D; McKinney BA; Hartman JL
    Chaos; 2010 Jun; 20(2):026103. PubMed ID: 20590332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide requirements for resistance to functionally distinct DNA-damaging agents.
    Lee W; St Onge RP; Proctor M; Flaherty P; Jordan MI; Arkin AP; Davis RW; Nislow C; Giaever G
    PLoS Genet; 2005 Aug; 1(2):e24. PubMed ID: 16121259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The DNA-damage signature in Saccharomyces cerevisiae is associated with single-strand breaks in DNA.
    Fry RC; DeMott MS; Cosgrove JP; Begley TJ; Samson LD; Dedon PC
    BMC Genomics; 2006 Dec; 7():313. PubMed ID: 17163986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale phenotypic analysis--the pilot project on yeast chromosome III.
    Rieger KJ; Kaniak A; Coppée JY; Aljinovic G; Baudin-Baillieu A; Orlowska G; Gromadka R; Groudinsky O; Di Rago JP; Slonimski PP
    Yeast; 1997 Dec; 13(16):1547-62. PubMed ID: 9509574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of yeast filamentous-form growth by modules in an integrated molecular network.
    Prinz S; Avila-Campillo I; Aldridge C; Srinivasan A; Dimitrov K; Siegel AF; Galitski T
    Genome Res; 2004 Mar; 14(3):380-90. PubMed ID: 14993204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic approaches for identifying DNA damage response pathways in S. cerevisiae.
    Chang M; Parsons AB; Sheikh BH; Boone C; Brown GW
    Methods Enzymol; 2006; 409():213-35. PubMed ID: 16793404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants.
    Jo WJ; Loguinov A; Chang M; Wintz H; Nislow C; Arkin AP; Giaever G; Vulpe CD
    Toxicol Sci; 2008 Jan; 101(1):140-51. PubMed ID: 17785683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin modifications and chromatin remodeling during DNA repair in budding yeast.
    Tsabar M; Haber JE
    Curr Opin Genet Dev; 2013 Apr; 23(2):166-73. PubMed ID: 23602331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.