These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16738557)

  • 21. Evolution of motif variants and positional bias of the cyclic-AMP response element.
    Smith B; Fang H; Pan Y; Walker PR; Famili AF; Sikorska M
    BMC Evol Biol; 2007 Feb; 7 Suppl 1(Suppl 1):S15. PubMed ID: 17288573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae.
    Teixeira MC; Monteiro P; Jain P; Tenreiro S; Fernandes AR; Mira NP; Alenquer M; Freitas AT; Oliveira AL; Sá-Correia I
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D446-51. PubMed ID: 16381908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of the INO2 regulatory gene of Saccharomyces cerevisiae is controlled by positive and negative promoter elements and an upstream open reading frame.
    Eiznhamer DA; Ashburner BP; Jackson JC; Gardenour KR; Lopes JM
    Mol Microbiol; 2001 Mar; 39(5):1395-405. PubMed ID: 11251853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Candidate regulatory sequence elements for cell cycle-dependent transcription in Saccharomyces cerevisiae.
    Wolfsberg TG; Gabrielian AE; Campbell MJ; Cho RJ; Spouge JL; Landsman D
    Genome Res; 1999 Aug; 9(8):775-92. PubMed ID: 10447512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide analysis of the cis-regulatory modules of divergent gene pairs in yeast.
    Su CH; Shih CH; Chang TH; Tsai HK
    Genomics; 2010 Dec; 96(6):352-61. PubMed ID: 20826206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Position specific variation in the rate of evolution in transcription factor binding sites.
    Moses AM; Chiang DY; Kellis M; Lander ES; Eisen MB
    BMC Evol Biol; 2003 Aug; 3():19. PubMed ID: 12946282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dynamic, combinatorial cis-regulatory lexicon of epidermal differentiation.
    Kim DS; Risca VI; Reynolds DL; Chappell J; Rubin AJ; Jung N; Donohue LKH; Lopez-Pajares V; Kathiria A; Shi M; Zhao Z; Deep H; Sharmin M; Rao D; Lin S; Chang HY; Snyder MP; Greenleaf WJ; Kundaje A; Khavari PA
    Nat Genet; 2021 Nov; 53(11):1564-1576. PubMed ID: 34650237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The contribution of cis-regulatory elements to head-to-head gene pairs' co-expression pattern.
    Hao P; Yu Y; Zhang X; Tu K; Fan H; Zhong Y
    Sci China C Life Sci; 2009 Jan; 52(1):74-9. PubMed ID: 19152086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accuracy and application of the motif expression decomposition method in dissecting transcriptional regulation.
    Zhang Z; Zhang J
    Nucleic Acids Res; 2008 Jun; 36(10):3185-93. PubMed ID: 18411204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-scale techniques highlight the epigenome and redefine fundamental principles of gene regulation.
    Pike JW
    J Bone Miner Res; 2011 Jun; 26(6):1155-62. PubMed ID: 21611959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seven myths of how transcription factors read the cis-regulatory code.
    Zeitlinger J
    Curr Opin Syst Biol; 2020 Oct; 23():22-31. PubMed ID: 33134611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms for diversity in gene expression patterns.
    Struhl K
    Neuron; 1991 Aug; 7(2):177-81. PubMed ID: 1873025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Keeping up with the 'omics: non-equilibrium models of gene regulation.
    Pincus D
    BMC Biol; 2015 Feb; 13():9. PubMed ID: 25706645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shaping biological knowledge.
    Lisacek F
    Pharmacogenomics; 2003 Jan; 4(1):5-8. PubMed ID: 12517279
    [No Abstract]   [Full Text] [Related]  

  • 35. Genome architecture and the role of transcription.
    Papantonis A; Cook PR
    Curr Opin Cell Biol; 2010 Jun; 22(3):271-6. PubMed ID: 20356724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SArKS: de novo discovery of gene expression regulatory motif sites and domains by suffix array kernel smoothing.
    Wylie DC; Hofmann HA; Zemelman BV
    Bioinformatics; 2019 Oct; 35(20):3944-3952. PubMed ID: 30903136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamic model of gene regulation for the Or59b olfactory receptor in Drosophila.
    González A; Jafari S; Zenere A; Alenius M; Altafini C
    PLoS Comput Biol; 2019 Jan; 15(1):e1006709. PubMed ID: 30653495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting gene expression in massively parallel reporter assays: A comparative study.
    Kreimer A; Zeng H; Edwards MD; Guo Y; Tian K; Shin S; Welch R; Wainberg M; Mohan R; Sinnott-Armstrong NA; Li Y; Eraslan G; Amin TB; Tewhey R; Sabeti PC; Goke J; Mueller NS; Kellis M; Kundaje A; Beer MA; Keles S; Gifford DK; Yosef N
    Hum Mutat; 2017 Sep; 38(9):1240-1250. PubMed ID: 28220625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs.
    Balwierz PJ; Pachkov M; Arnold P; Gruber AJ; Zavolan M; van Nimwegen E
    Genome Res; 2014 May; 24(5):869-84. PubMed ID: 24515121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstruction of transcriptional regulatory networks by stability-based network component analysis.
    Chen X; Xuan J; Wang C; Shajahan AN; Riggins RB; Clarke R
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1347-58. PubMed ID: 24407294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.