BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16739222)

  • 1. Zeta potential as a diagnostic tool to evaluate the biomass electrostatic adhesion during ion-exchange expanded bed application.
    Lin DQ; Zhong LN; Yao SJ
    Biotechnol Bioeng; 2006 Sep; 95(1):185-91. PubMed ID: 16739222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomass/adsorbent electrostatic interactions in expanded bed adsorption: a zeta potential study.
    Lin DQ; Brixius PJ; Hubbuch JJ; Thömmes J; Kula MR
    Biotechnol Bioeng; 2003 Jul; 83(2):149-57. PubMed ID: 12768620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target control of cell disruption to minimize the biomass electrostatic adhesion during anion-exchange expanded bed adsorption.
    Lin DQ; Dong JN; Yao SJ
    Biotechnol Prog; 2007; 23(1):162-7. PubMed ID: 17269684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of homogenisation conditions on biomass-adsorbent interactions during ion-exchange expanded bed adsorption.
    Hubbuch JJ; Brixius PJ; Lin DQ; Mollerup I; Kula MR
    Biotechnol Bioeng; 2006 Jun; 94(3):543-53. PubMed ID: 16518839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing adsorbent-biomass interactions during expanded bed adsorption onto ion exchangers utilizing surface energetics.
    Vennapusa R; Hunegnaw SM; Cabrera RB; Fernández-Lahore M
    J Chromatogr A; 2008 Feb; 1181(1-2):9-20. PubMed ID: 18199439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyelectrolyte-coated ion exchangers for cell-resistant expanded bed adsorption.
    Dainiak MB; Galaev IY; Mattiasson B
    Biotechnol Prog; 2002; 18(4):815-20. PubMed ID: 12153316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the extent of disruption of Bakers' yeast on protein adsorption in expanded beds.
    Balasundaram B; Harrison ST
    J Biotechnol; 2008 Feb; 133(3):360-9. PubMed ID: 17933410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell/adsorbent interactions in expanded bed adsorption of proteins.
    Feuser J; Walter J; Kula MR; Thömmes J
    Bioseparation; 1999; 8(1-5):99-109. PubMed ID: 10734561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the influence of yeast cell debris on protein and alpha-glucosidase adsorption at various zones within the expanded bed using in-bed sampling.
    Balasundaram B; Harrison ST; Li J; Chase HA
    Biotechnol Bioeng; 2008 Feb; 99(3):614-24. PubMed ID: 17680682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of biomass on the hydrodynamic behavior and stability of expanded beds.
    Lin DQ; Thömmes J; Kula MR; Hubbuch JJ
    Biotechnol Bioeng; 2004 Aug; 87(3):337-46. PubMed ID: 15281108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compatibility of column inlet and adsorbent designs for processing of corn endosperm extract by expanded bed adsorption.
    Menkhaus TJ; Glatz CE
    Biotechnol Bioeng; 2004 Aug; 87(3):324-36. PubMed ID: 15281107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic analysis on the effects of salt concentration and pH on protein adsorption onto a mixed-mode adsorbent with cation ligand.
    Gao D; Lin DQ; Yao SJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Nov; 859(1):16-23. PubMed ID: 17913599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimising biomass/adsorbent interactions in expanded bed adsorption processes: a methodological design approach.
    Lin DQ; Fernández-Lahore HM; Kula MR; Thömmes J
    Bioseparation; 2001; 10(1-3):7-19. PubMed ID: 11787800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of new high-density ion exchange adsorbents for expanded bed adsorption chromatography.
    Xia HF; Lin DQ; Yao SJ
    J Chromatogr A; 2007 Mar; 1145(1-2):58-66. PubMed ID: 17316664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot scale recovery of monoclonal antibodies by expanded bed ion exchange adsorption.
    Ameskamp N; Priesner C; Lehmann J; Lütkemeyer D
    Bioseparation; 1999; 8(1-5):169-88. PubMed ID: 10734569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of some operating parameters of novel adsorbents for recovery of proteins in expanded beds.
    Hjorth R; Kämpe S; Carlsson M
    Bioseparation; 1995 Aug; 5(4):217-23. PubMed ID: 8541717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanded bed adsorption/desorption of proteins with Streamline Direct CST I adsorbent.
    Li P; Xiu G; Mata VG; Grande CA; Rodrigues AE
    Biotechnol Bioeng; 2006 Aug; 94(6):1155-63. PubMed ID: 16572450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and evaluation of polymer-coated adsorbents for the expanded bed recovery of protein products from particulate feedstocks.
    Jahanshahi M; Partida-Martinez L; Hajizadeh S
    J Chromatogr A; 2008 Aug; 1203(1):13-20. PubMed ID: 18656881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Study of the interaction of HEK-293 cells with streamline chelating adsorbent in expanded bed operation.
    Poulin F; Jacquemart R; De Crescenzo G; Jolicoeur M; Legros R
    Biotechnol Prog; 2008; 24(1):279-82. PubMed ID: 18197671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization considerations for the purification of alpha1-antitrypsin using silica-based ion-exchange adsorbents in packed and expanded beds.
    Finette GM; Baharin B; Mao QM; Hearn MT
    Biotechnol Prog; 1998; 14(2):286-93. PubMed ID: 9548782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.